Loading...
HomeMy WebLinkAboutAPPROVED - STRUCT CALCS - RRAD21-0004.pdf 3425#452!, #!,#5,!4)/.3 !$$)4)/.3 !.$ !,4%2!4)/. FOR: RESIDENCE 74055 ASTER DR. PALM DESERT, CALIFORNIA CHARLES D. GARLAND, ARCHITECT ,)#%.3% ./ȁ ΔΔΜΜΔ %80 ΔΓȝΖΔȝΕΔ 74-991 JONI DR. SUITE #9 PALM DESERT CA 92260 PHONE: 760/340-3528 FAX:760/340-3728 BQQSPWFE DJUZ!PG!QBMN!EFTFSU EFQBSUNFOU!PG!CVJMEJOH!BOE!TBGFUZ CZ;!KGJOMFZ 1302103132 SSBE32.1115 12/29/20 TUPSFE!EJHJUBMMZ 2 STRUCTURAL CALCULATIONS LOAD .......................................................0 ¦¤ 4 BEAM .................................................. Page 5 LATERAL ANALYSISPage 12 SEISMIC ZONE Page 16 SHEAR WALL REQUIREMENTS Page 18 FOUNDATION Page 20 3 STRUCTURAL CALCULATIONS GOVERNING CODES CBC 2019 & ASCE 7-16. ACI318-14, 2018NDS, 2018NDS SDPWS A- DESIGN LOADS a. ROOF LIVE LOAD 20, PSF b. ROOF DEAD LOAD 15 PSF c. WIND IMPORTANCE FACTOR 1.00 WIND ZONE 120 MPH EXPOSURE C d. SITE CLASS DEFINITION ( D) e. OCCUPANCY CATEGORY II f. SEISMIC DESIGN CATEGORY (D) g. COEFFICIENT Cs 0.15 h. SEISMIC Ss 1.5g i. SEISMIC S1 0.6g j. FACTOR R 6.5 k. SEISMIC SDs 1.20 l. SEISMIC SD1 0.60 4 STRUCTURAL CALCULATIONS 5 STRUCTURAL CALCULATIONS BEAM DESIGN HDR#1 DOUGLAS FIR-LARCH No 1=Fb =1000psi SPAN =6.0ftFv =95psi TRIB. AREA =16.0ftE =1700000psi Load Factor C D =1.25 Wet. Service Factor C M =1.00 D.L =15.0lb/ftTemperature Factor Ct =1.00 Size Factor C F = L.L =20.0lb/ft1.00 TOTAL35.0lb/ftRepetitive m. Fact. Cr =1.00 Incising Factor Ci =1.00 Shear stress Factor C H =1.00W =560.0lb/ft M=W x L² / 8 560lb/ft M=2520.0ft-lb M=30240in-lb 6.00ft V=W x L / 2 BENDINGV=1680lb F´b =Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci) F´b =1250psiUSE Req´d S = M / F´bS=24.19in^34X8Area =25.4in^2 f b =M/SSection=30.7in^3 ALLOW F´b =ACT. f b = Moment of Inertia=111in^4 1250psi>986.3psi OK SHEAR F´v = Fv(CD)(CM)(Ct)(CH)f v =1.5 V / A F´v = 119psi>f v =99.29psi OK DEFLECTION 5W L L^4 .=0.09in 384 E´ I OK E´=E (C M)(C t)(C i)1700000psi BEAM4X8 e max =L / 240 =0.30in 6 STRUCTURAL CALCULATIONS BEAM DESIGN HDR#2 DOUGLAS FIR-LARCH No 1=Fb =1000psi SPAN =5.0ftFv =95psi TRIB. AREA =16.0ftE =1700000psi Load Factor C D =1.25 Wet. Service Factor C M =1.00 D.L =15.0lb/ftTemperature Factor Ct =1.00 Size Factor C F = L.L =20.0lb/ft1.00 TOTAL35.0lb/ftRepetitive m. Fact. Cr =1.00 Incising Factor Ci =1.00 Shear stress Factor C H =1.00W =560.0lb/ft M=W x L² / 8 560lb/ft M=1750.0ft-lb M=21000in-lb 5.00ft V=W x L / 2 BENDINGV=1400lb F´b =Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci) F´b =1250psiUSE Req´d S = M / F´bS=16.80in^34X8Area =25.4in^2 f b =M/SSection=30.7in^3 ALLOW F´b =ACT. f b = Moment of Inertia=111in^4 1250psi>684.9psi OK SHEAR F´v = Fv(CD)(CM)(Ct)(CH)f v =1.5 V / A F´v = 119psi>f v =82.74psi OK DEFLECTION 5W L L^4 .=0.04in 384 E´ I OK E´=E (C M)(C t)(C i)1700000psi BEAM4X8 e max =L / 240 =0.25in 7 STRUCTURAL CALCULATIONS BEAM DESIGN HDR#3 DOUGLAS FIR-LARCH No 1=Fb =1000psi SPAN =3.0ftFv =95psi TRIB. AREA =16.0ftE =1700000psi Load Factor C D =1.25 Wet. Service Factor C M =1.00 D.L =19.0lb/ftTemperature Factor Ct =1.00 Size Factor C F = L.L =20.0lb/ft1.00 TOTAL39.0lb/ftRepetitive m. Fact. Cr =1.00 Incising Factor Ci =1.00 Shear stress Factor C H =1.00W =624.0lb/ft M=W x L² / 8 624lb/ft M=702.0ft-lb M=8424in-lb 3.00ft V=W x L / 2 BENDINGV=936lb F´b =Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci) F´b =1250psiUSE Req´d S = M / F´bS=6.74in^34X6Area =19.3in^2 f b =M/SSection=17.7in^3 ALLOW F´b =ACT. f b = Moment of Inertia=48.5in^4 1250psi>477.3psi OK SHEAR F´v = Fv(CD)(CM)(Ct)(CH)f v =1.5 V / A F´v = 119psi>f v =72.94psi OK DEFLECTION 5W L L^4 .=0.01in 384 E´ I OK E´=E (C M)(C t)(C i)1700000psi BEAM4X6 e max =L / 240 =0.15in 8 STRUCTURAL CALCULATIONS BEAM DESIGN BEAM #1 DOUGLAS FIR-LARCH No 1=Fb =1000psi SPAN =10.0ftFv =95psi TRIB. AREA =6.0ftE =1700000psi Load Factor C D =1.25 Wet. Service Factor C M =1.00 D.L =19.0lb/ftTemperature Factor Ct =1.00 Size Factor C F = L.L =20.0lb/ft1.00 TOTAL39.0lb/ftRepetitive m. Fact. Cr =1.00 Incising Factor Ci =1.00 Shear stress Factor C H =1.00W =234.0lb/ft M=W x L² / 8 234lb/ft M=2925.0ft-lb M=35100in-lb 10.00ft V=W x L / 2 BENDINGV=1170lb F´b =Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci) F´b =1250psiUSE Req´d S = M / F´bS=28.08in^34X12Area =39.4in^2 f b =M/SSection=73.8in^3 ALLOW F´b =ACT. f b = Moment of Inertia=415in^4 1250psi>475.4psi OK SHEAR F´v = Fv(CD)(CM)(Ct)(CH)f v =1.5 V / A F´v = 119psi>f v =44.57psi OK DEFLECTION 5W L L^4 .=0.07in 384 E´ I OK E´=E (C M)(C t)(C i)1700000psi BEAM4X12 e max =L / 240 =0.50in 9 STRUCTURAL CALCULATIONS BEAM DESIGN BEAM #2 DOUGLAS FIR-LARCH No 1=Fb =1000psi SPAN =12.0ftFv =95psi TRIB. AREA =6.0ftE =1700000psi Load Factor C D =1.25 Wet. Service Factor C M =1.00 D.L =15.0lb/ftTemperature Factor Ct =1.00 Size Factor C F = L.L =20.0lb/ft1.00 TOTAL35.0lb/ftRepetitive m. Fact. Cr =1.00 Incising Factor Ci =1.00 Shear stress Factor C H =1.00W =210.0lb/ft M=W x L² / 8 210lb/ft M=3780.0ft-lb M=45360in-lb 12.00ft V=W x L / 2 BENDINGV=1260lb F´b =Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci) F´b =1250psiUSE Req´d S = M / F´bS=36.29in^34X12Area =39.4in^2 f b =M/SSection=73.8in^3 ALLOW F´b =ACT. f b = Moment of Inertia=415in^4 1250psi>614.4psi OK SHEAR F´v = Fv(CD)(CM)(Ct)(CH)f v =1.5 V / A F´v = 119psi>f v =47.99psi OK DEFLECTION 5W L L^4 .=0.14in 384 E´ I OK E´=E (C M)(C t)(C i)1700000psi BEAM4X12 e max =L / 240 =0.60in 10 STRUCTURAL CALCULATIONS BEAM DESIGN BEAM #3 DOUGLAS FIR-LARCH No 1=Fb =1000psi SPAN =8.0ftFv =95psi TRIB. AREA =6.0ftE =1700000psi Load Factor C D =1.25 Wet. Service Factor C M =1.00 D.L =15.0lb/ftTemperature Factor Ct =1.00 Size Factor C F = L.L =20.0lb/ft1.00 TOTAL35.0lb/ftRepetitive m. Fact. Cr =1.00 Incising Factor Ci =1.00 Shear stress Factor C H =1.00W =210.0lb/ft M=W x L² / 8 210lb/ft M=1680.0ft-lb M=20160in-lb 8.00ft V=W x L / 2 BENDINGV=840lb F´b =Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci) F´b =1250psiUSE Req´d S = M / F´bS=16.13in^34X12Area =39.4in^2 f b =M/SSection=73.8in^3 ALLOW F´b =ACT. f b = Moment of Inertia=415in^4 1250psi>273.1psi OK SHEAR F´v = Fv(CD)(CM)(Ct)(CH)f v =1.5 V / A F´v = 119psi>f v =32.00psi OK DEFLECTION 5W L L^4 .=0.03in 384 E´ I OK E´=E (C M)(C t)(C i)1700000psi BEAM4X12 e max =L / 240 =0.40in 11 STRUCTURAL CALCULATIONS COLUMN DESIGN Column = DOUGLAS FIR-LARCH No 2=Fc =625psi le =10.0ftE =1600000psi LOAD1300lbLoad Factor C D =1.25 Wet. Serv Factor C M = 1.00 TOTAL1300.0lbBucking Stiffeners Ct =1.00 PSize Factor C F =1.00 Incising Factor Ci =1.00 K CE =0.30 Buckling and Crushing Interaction c =0.80 Fc* =Fc(CD)(CM)(Ct)(CF)(Cr)(Ci) 10.00 Fc* =781.25psi USE Euler Critical Buckling Stress for Columns4X6Area =19.3in^2 d =3.5in F CE =K CE E =408.3333psi (le / d)^2 Column Stability Factor Cp= 1 + F CE /Fc*1 + F CE/Fc*F CE / Fc* Cp = ^2 2c2cc Cp = 0.44934 F'c =Fc (CP)(CD)(CM)(Ct)(CF)(Cr)(Ci) F'c =351psi P = F'c *A =6757.59 OK P =1300.0 COLUMN4X6 12 STRUCTURAL CALCULATIONS Wind Analysis for Low-rise Building, Based on ASCE 7-2016 LATERAL FORCE ANALYSIS CBC 2019ASCE7-16. W I N D :110 mph Exposure C ENCLOSED qz= 0.00256X Kz Kzt Kd Ke V^2 I INPUT DATA Exposure category (B, C or D, ASCE 7-16 26.7.3)C Importance factor (ASCE 7-16 Table 1.5-2) I =1.00 w Basic wind speed (ASCE 7-10 26.5.1 or 2012 IBC)V =110 Topographic factor (ASCE 7-10 26.8 & Table 26.8-1) K =1.00 zt Building height to eaveh =10 e Building height to ridgeh =14 r q = velocity pressure at mean roof height, h. (Eq. 28.3-1 page 298 & Eq. 30.3-1 page 316) h K = velocity pressure exposure coefficient evaluated at height, h, (Tab. 28.3-1, pg 299)=0.85 h K = wind directionality factor. (Tab. 26.6-1, for building, page 250)=0.85 d h = mean roof height< 60 ft, \[Satisfactory\](ASCE 7-16 26.2.1)=12.00 < Min (L, B), \[Satisfactory\](ASCE 7-16 26.2.2) Ke = groumd elevation factor (1.0 per sec. 26.9 ) qz=22.38PSF 28.4.4 Minimum Design Wind load Sall BOT be Less than 16 lb/ ft2 multiplied by the wall area 8 lb/ ft2 multiplied by the Roof area of the building vertical plane WIND LOAD = qz*(1E+2E+3E+4E +0.18)*H/2 +(Hr-He) ANALYSISWIND LOAD=184# ft p = q \[(G C )-(G C )\] hpfpi where:p = pressure in appropriate zone. (Eq. 28.3-1, page 311).p =16psf (ASCE 7-16 28.3.4) min G C = product of gust effect factor and external pressure coefficient, see table below. (Fig. 28.3-1, page 312 & 313) p f G C = product of gust effect factor and internal pressure coefficient.(Tab. 26.13-1, Enclosed Building, page 271) p i a = width of edge strips, Fig 28.4-1, note 9, page 301, MAX\[ MIN(0.1B, 0.1L, 0.4h), MIN(0.04B, 0.04L), 3\] = Net Pressures (psf), Basic Load CasesNet Pressures (psf), Torsional Load Cases Roof angle =15.64Roof angle =0.00Roof angle =15.64 Net Pressure withNet Pressure withNet Pressure with SurfaceSurface G CG CG C p fp fp f (+GC)(-GC)(+GC)(-GC)(+GC)(-GC) p i p i p i p i p i p i 10.496.6814.37-0.45-13.47-5.771T0.491.673.59 2-0.69-18.60-10.90-0.69-18.60-10.902T-0.69-4.65-2.73 3-0.45-13.43-5.73-0.37-11.76-4.063T-0.45-3.36-1.43 4-0.39-12.17-4.48-0.45-13.47-5.774T-0.39-3.04-1.12 50.404.7012.40Roof angle =0.00 Surface 6-0.29-10.05-2.35 Net Pressure with G C p f 1E0.7412.0819.77-0.48-14.11-6.41(+GC)(-GC) p i p i 2E-1.07-26.73-19.03-1.07-26.73-19.035T0.401.183.10 13 STRUCTURAL CALCULATIONS Basic Load Case A (Transverse Direction)Basic Load Case B (Longitudinal Direction) AreaArea Pressure (k) withPressure (k) with SurfaceSurface 22 (ft)(ft) (+GC)(-GC)(+GC)(-GC) p i p i p i p i 19906.6114.2322337-43.46-25.48 22337-43.46-25.4832337-27.48-9.49 32337-31.38-13.3956082.867.54 4990-12.05-4.436608-6.11-1.43 1E1101.332.182E260-6.94-4.94 2E260-6.94-4.943E260-3.94-1.94 3E260-4.57-2.575E1171.081.98 4E110-1.79-0.946E117-1.53-0.63 Horiz.17.8817.88Horiz.11.5711.57 Vert.-83.15-44.67Vert.-68.75-32.37 Min. windMin. wind Horiz.28.8028.80Horiz.11.6011.60 28.4.428.4.4 Vert.-80.00-80.00Vert.-80.00-80.00 Torsional Load Case A (Transverse Direction)Torsional Load Case B (Longitudinal Direction) AreaArea Pressure (k) withTorsion (ft-k)Pressure (k) withTorsion (ft-k) SurfaceSurface 22 (ft)(ft) (+GC)(-GC)(+GC)(-GC)(+GC)(-GC)(+GC)(-GC) p i p i p i p i p i p i p i p i 14402.946.326614222337-43.46-25.48-29-17 21038-19.32-11.32-117-6932337-27.48-9.49196 31038-13.94-5.95853652461.153.041129 4440-5.36-1.97121446246-2.47-0.58235 1E1101.332.1860982E260-6.94-4.948963 2E260-6.94-4.94-84-603E260-3.94-1.94-50-25 3E260-4.57-2.5755315E1171.081.982444 4E110-1.79-0.9480426E117-1.53-0.633414 1T5500.921.98-23-495T3630.431.12-5-13 2T1298-6.04-3.5441246T363-0.91-0.21-10-2 Total Horiz. Torsional Load, M 3T1298-4.36-1.86-29-13 T 104.6104.6 4T550-1.67-0.62-42-15 Total Horiz. Torsional Load, M T 212212 Design pressures for components and cladding p = q\[ (G C) - (G C)\] hppi where:p = pressure on component. (Eq. 30.4-1, pg 318) p =16.00psf (ASCE 7-10 30.2.2) min G C = external pressure coefficient. p see table below. (ASCE 7-10 30.4.2) EffectiveZone 1Zone 2Zone 3Zone 4Zone 5 2 Area (ft) GC - GC GC - GC GC - GC GC - GC GC - GC PPPPPPPPPP Comp.280.41-0.860.41-1.480.41-2.330.92-1.020.92-1.24 Comp. & Cladding Zone 1Zone 2Zone 3Zone 4Zone 5 Pressure PositiveNegativePositiveNegativePositiveNegativePositiveNegativePositiveNegative ( psf ) 16.00-22.1416.00-35.4216.00-53.7023.54-25.6823.54-30.41 14 STRUCTURAL CALCULATIONS 15 STRUCTURAL CALCULATIONS 16 STRUCTURAL CALCULATIONS ASCE/SEI 7-16 DESIGN RESPONSE SPECTRUM. TWO RESPONSE PERIODS (0.2s AND 1.0s) SITE CLASS DEFINITION=D OCCUPANCY CATEGORY =II SEISMIC DESIGN CATEGORY =D PALM DESERT CALIFORNIA92260 0.2 seg Ss = 150%g = 1.5g 1.0 seg S1 = 60%g = 0.60g SDs= 2/3 * SMS = 2/3 * Fa * Ss SD1 = 2/3 * SM1 = 2/3 * Fv * S1 SMS = Fa * Ss SM1 = Fv * S1 SM1=1.02 SDs =1.20S1 =0.6 SD1 =0.68Fv =1.7 SECTION 11.4.8 R =6.5 TABLE 12.2 ASCE 7-16 IE =1.0 t=0.2 ASCE BASE SHEAR V= Cs W 0.185W(12.8-1) Cs = SDS / ( R/Ie)T<Ts 0.185(12.8-2) NOT EXCEED Cs = SD1 / T( R/Ie)Ts<T<TL 0.523(12.8-3) NOT LESS THAN Cs =0.01 0.010(12.8-5) V=0.18W 17 STRUCTURAL CALCULATIONS SEISMIC (CONTINUED) D.L. ROOF15psi EXT. WALLS15 SEISMIC , V,=0.18WALL HT = 10ft DIAPH=37x30 TRANSVERSELLONGITUDINAL WORST37FTWORST30FT ROOF =555ROOF =450 1Walls =751Walls =75 630525 X0.18X0.18 113.4# ft(MAX)94.5# ft(MAX) SEISMIC =114PLF <184= WIND W=184 T=C = WL^2 / 8b L=30=559.4594595 B =37 NAIL =TABLE 23-III-C-2 TOTAL NAIL = LOAD /NAIL=2.983 PROVIDE ( 8 PAIR) 16 d COMMON @ E.A 4'-0" SPACE @ TOP CHORDS 18 STRUCTURAL CALCULATIONS 19 STRUCTURAL CALCULATIONS SHEAR WALL CONSTRUCTION NAILS (1 1/23/8 LONG ANCHOR BOLTS (w/ 330.229- (ALLOWABLE LOAD: 75 plf PER CBC 2019 TABLE 2306.3(3) AT THICK PLATE WASHERS SDC D FRAMING (ALLOWABLE LOAD: 180 plf PER CBC 2019 TABLE 2306.3(3) THE NEXT THREE (3) SHEAR WALL TYPES SHALL ALL HAVE THE FOLLOWING IDENTICAL STRUCTURAL I WOOD PANEL DIAPHRAGM: (WALL1 , 2 & 3 ONLY) 3/8-D EXPOSURE I APA PLYWOOD ORIENTED STRAND BOARD APPLIED DIRECTLY TO THE STUDS, WITH THE LONG DIMENSION OF FULL PANELS LAID PARALLEL OR PERPENDICULAR TO THE LENGTH OF THE STUDS, ALL EDGES OF EACH PANEL SUPPORTED ON STUDS, SILLS, PLATES OR BLOCKING AND NAILED AND ANCHORED AS FOLLOWS: 1 FIELDS. ANCHOR WITH (ALLOWABLE LOAD: 260 plf PER 2018 NDS SDPWS TABLE) * CONSTRUCTION NOTE(S) 1 & 2 APPLY (NOTES 3, 4 AND 6 APPLY ONLY WHEN DIAPHRAGM AT BOTH SIDES ) 2 FIELDS. ANCHOR WITH (CALCULATE TO MAXIMUM OF 380 plf PER 2018 NDS SDPWS TABLE) CONSTRUCTION NOTE(S) 1 & 2 APPLY (NOTES 3, 4, 5 AND 6 APPLY WHEN DIAPHRAGM AT BOTH SIDES) 3 FIELDS. ANCHOR WITH 5/8 (ALLOWABLE LOAD: 490 plf PER 2018 NDS SDPWS TABLE ) * CONSTRUCTION NOTE(S) 1, 2, 3 & 6 APPLY (NOTES 4 & 5 APPLY WHEN DIAPHRAGM AT BOTH SIDES) * NOTE VALUES ARE AP 20 STRUCTURAL CALCULATIONS 21 STRUCTURAL CALCULATIONS FOUNDATION POST FOOTING 12" 18"4"18" 40" X 12" = 480SQ IN3.3333 144SQ IN SOIL PRESSURE =1000PSF TOTAL LOAD =3,300.#>2925#OK 22 STRUCTURAL CALCULATIONS 5/8" SET-XP EPOXY ADHESIVE ANCHOR ASTEM 193 GRADE B7 hef= 10" calculate static steel strength tension per ACI 318-14 sect D 5.1. SA N sa = 0.75x 27900= 20925# calculate static concrete breakout strength in tension per ACI 318-14 sect D 5.2. SA N sa = 0.65x 6000 = 3900# calculate static pullout strength in tension per ACI 318-14 SECT D.5.3 as amended in section 4.1.4 of this repost p N a = 0.65x 25175 = 16360# ACI 318-11 SECT D.4.1.2 N 3900/1.48 = 2635 # 23 STRUCTURAL CALCULATIONS 24 STRUCTURAL CALCULATIONS 25 STRUCTURAL CALCULATIONS DERIVE GRADE BEAM ASSUME =2500 PSI CONC LINE 5# 5TOP & BOTT DATAS:ACI318 FT Lsw2Fy=60KSIAs min= FT Larm2Fc=3000PSI0.00141.6128in2 IN h=36d=33IN0.00182.0736in2 IN B=32AS=1.55in25# 50.0022.304in2 TOP & BOTT5# 53.100in2 OVERTURNIG MOMENT:RESISTING DEAD LOAD:P: ROOF+WALL+GR. BEAM ft H=8 KIP # p=2.3ROOF=4200P=11740Lb kip*ft# Mo=18.4WALL=340PU=0.9*P # GR. BEAM=7200PU=10566Lb MU= 1.4*Mo KIP FT. MU=25.76 RESISTING MOMENT:L=6 kip*ft MO=18.4 Mr=0.9*P*L/2OVERTURNING STABILITY RATION KIP*FT Mr=31.698>MO=18.4000 OK 1.72272: 1 OK 1.5:1 SOIL BEARING PRESSURE: L req= 6*e9.403748FT e=Mo/P 1.56729 FTqmax= 2*P / 3*B*eo<ALLOWABLE BEARING eo=L/2-e 1.43271 FTqmax=2048.567PSFPRESSURE 2500 PSF FACTORED EARTH PRESSURE: eu=MU/PU 2.43801 ftqu_max= 2*p / 3*B*eoqu_p= qu_max- ( qu_max) (larm) euo=L/2-eu 0.56199 ftqu_max= 4700.250758psf3*euo qu_p=-875.459psf Mu=qu_p* Larm^2 + (qu_max-qu_p) * larm^2 * B Mu=5.243257161 2 6kip ft Vu=qu_p + qu_max *(Larm)*B Vu=10199.4 2lb. REINFORCING STEEL: AS=1.55a= AS FY1.1in 0.85 F'C*B Mn=0.9*As*Fy*(d-a/2)Mn=226.2002757kip ft>5.24kip ftOK Vc=0.85*2*B*d 2500Vc=98.32715352kip>10.1994kipOK PROVIDE 32IN WIIDE X36IN DEEP 6 FT LONG FOOTING WITH5# 5TOP AND BOTTOM CONT. 26 STRUCTURAL CALCULATIONS DERIVE GRADE BEAM ASSUME =2500 PSI CONC LINE 5# 5TOP & BOTT DATAS:ACI318 FT Lsw2Fy=60KSI As min= FT Larm2Fc=3000PSI 0.00141.6128in2 IN h=36d=33IN 0.00182.0736in2 IN B=32AS=1.55 in25# 50.0022.304in2 TOP & BOTT5# 53.100in2 OVERTURNIG MOMENT:RESISTING DEAD LOAD:P: ROOF+WALL+GR. BEAM ft H=9 KIP # p=1.8ROOF=4200P=11740Lb kip*ft# Mo=16.2WALL=340PU=0.9*P # GR. BEAM=7200PU=10566Lb MU= 1.4*Mo KIP FT. MU=22.68 RESISTING MOMENT:L=6 kip*ft MO=16.2 Mr=0.9*P*L/2OVERTURNING STABILITY RATION KIP*FT Mr=31.698>MO=16.2000 OK 1.95667: 1 OK 1.5:1 SOIL BEARING PRESSURE: L req= 6*e8.279387 FT e=Mo/P 1.3799 FT qmax= 2*P / 3*B*eo<ALLOWABLE BEARING eo=L/2-e 1.6201 FT qmax=1811.614 PSF PRESSURE 2500 PSF FACTORED EARTH PRESSURE: eu=MU/PU 2.14651 ftqu_max= 2*p / 3*B*eoqu_p= qu_max- ( qu_max) (larm) euo=L/2-eu 0.85349 ftqu_max= 3094.931138psf3*euo qu_p=677.467psf Mu=qu_p* Larm^2 + (qu_max-qu_p) * larm^2 * B Mu=7.910870039 2 6kip ft Vu=qu_p + qu_max *(Larm)*B Vu=10059.7 2lb. REINFORCING STEEL: AS=1.55a= AS FY1.1in 0.85 F'C*B Mn=0.9*As*Fy*(d-a/2)Mn=226.2002757kip ft>7.91kip ftOK Vc=0.85*2*B*d 2500Vc=98.32715352kip>10.0597kipOK PROVIDE 32IN WIIDE X36IN DEEP 6 FT LONG FOOTING WITH5# 5TOP AND BOTTOM CONT. 27 STRUCTURAL CALCULATIONS 28 STRUCTURAL CALCULATIONS