HomeMy WebLinkAboutAPPROVED - STRUCT CALCS - RRAD21-0004.pdf
3425#452!, #!,#5,!4)/.3
!$$)4)/.3 !.$ !,4%2!4)/.
FOR:
RESIDENCE
74055 ASTER DR.
PALM DESERT, CALIFORNIA
CHARLES D. GARLAND, ARCHITECT
,)#%.3% ./ȁ ΔΔΜΜΔ %80 ΔΓȝΖΔȝΕΔ
74-991 JONI DR. SUITE #9 PALM DESERT CA 92260
PHONE: 760/340-3528 FAX:760/340-3728
BQQSPWFE
DJUZ!PG!QBMN!EFTFSU
EFQBSUNFOU!PG!CVJMEJOH!BOE!TBGFUZ
CZ;!KGJOMFZ
1302103132
SSBE32.1115
12/29/20
TUPSFE!EJHJUBMMZ
2
STRUCTURAL CALCULATIONS
LOAD .......................................................0 ¦¤ 4
BEAM .................................................. Page 5
LATERAL ANALYSISPage 12
SEISMIC ZONE Page 16
SHEAR WALL REQUIREMENTS Page 18
FOUNDATION Page 20
3
STRUCTURAL CALCULATIONS
GOVERNING CODES
CBC 2019 & ASCE 7-16. ACI318-14, 2018NDS, 2018NDS SDPWS
A- DESIGN LOADS
a. ROOF LIVE LOAD 20, PSF
b. ROOF DEAD LOAD 15 PSF
c. WIND IMPORTANCE FACTOR 1.00 WIND ZONE 120 MPH
EXPOSURE C
d. SITE CLASS DEFINITION ( D)
e. OCCUPANCY CATEGORY II
f. SEISMIC DESIGN CATEGORY (D)
g. COEFFICIENT Cs 0.15
h. SEISMIC Ss 1.5g
i. SEISMIC S1 0.6g
j. FACTOR R 6.5
k. SEISMIC SDs 1.20
l. SEISMIC SD1 0.60
4
STRUCTURAL CALCULATIONS
5
STRUCTURAL CALCULATIONS
BEAM DESIGN
HDR#1
DOUGLAS FIR-LARCH No 1=Fb =1000psi
SPAN =6.0ftFv =95psi
TRIB. AREA =16.0ftE =1700000psi
Load Factor C D =1.25
Wet. Service Factor C M =1.00
D.L =15.0lb/ftTemperature Factor Ct =1.00
Size Factor C F =
L.L =20.0lb/ft1.00
TOTAL35.0lb/ftRepetitive m. Fact. Cr =1.00
Incising Factor Ci =1.00
Shear stress Factor C H =1.00W =560.0lb/ft
M=W x L² / 8
560lb/ft
M=2520.0ft-lb
M=30240in-lb
6.00ft
V=W x L / 2
BENDINGV=1680lb
F´b =Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci)
F´b =1250psiUSE
Req´d S = M / F´bS=24.19in^34X8Area =25.4in^2
f b =M/SSection=30.7in^3
ALLOW F´b =ACT. f b = Moment of Inertia=111in^4
1250psi>986.3psi OK
SHEAR
F´v = Fv(CD)(CM)(Ct)(CH)f v =1.5 V / A
F´v = 119psi>f v =99.29psi OK
DEFLECTION
5W L L^4
.=0.09in
384 E´ I OK
E´=E (C M)(C t)(C i)1700000psi
BEAM4X8
e max =L / 240 =0.30in
6
STRUCTURAL CALCULATIONS
BEAM DESIGN
HDR#2
DOUGLAS FIR-LARCH No 1=Fb =1000psi
SPAN =5.0ftFv =95psi
TRIB. AREA =16.0ftE =1700000psi
Load Factor C D =1.25
Wet. Service Factor C M =1.00
D.L =15.0lb/ftTemperature Factor Ct =1.00
Size Factor C F =
L.L =20.0lb/ft1.00
TOTAL35.0lb/ftRepetitive m. Fact. Cr =1.00
Incising Factor Ci =1.00
Shear stress Factor C H =1.00W =560.0lb/ft
M=W x L² / 8
560lb/ft
M=1750.0ft-lb
M=21000in-lb
5.00ft
V=W x L / 2
BENDINGV=1400lb
F´b =Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci)
F´b =1250psiUSE
Req´d S = M / F´bS=16.80in^34X8Area =25.4in^2
f b =M/SSection=30.7in^3
ALLOW F´b =ACT. f b = Moment of Inertia=111in^4
1250psi>684.9psi OK
SHEAR
F´v = Fv(CD)(CM)(Ct)(CH)f v =1.5 V / A
F´v = 119psi>f v =82.74psi OK
DEFLECTION
5W L L^4
.=0.04in
384 E´ I OK
E´=E (C M)(C t)(C i)1700000psi
BEAM4X8
e max =L / 240 =0.25in
7
STRUCTURAL CALCULATIONS
BEAM DESIGN
HDR#3
DOUGLAS FIR-LARCH No 1=Fb =1000psi
SPAN =3.0ftFv =95psi
TRIB. AREA =16.0ftE =1700000psi
Load Factor C D =1.25
Wet. Service Factor C M =1.00
D.L =19.0lb/ftTemperature Factor Ct =1.00
Size Factor C F =
L.L =20.0lb/ft1.00
TOTAL39.0lb/ftRepetitive m. Fact. Cr =1.00
Incising Factor Ci =1.00
Shear stress Factor C H =1.00W =624.0lb/ft
M=W x L² / 8
624lb/ft
M=702.0ft-lb
M=8424in-lb
3.00ft
V=W x L / 2
BENDINGV=936lb
F´b =Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci)
F´b =1250psiUSE
Req´d S = M / F´bS=6.74in^34X6Area =19.3in^2
f b =M/SSection=17.7in^3
ALLOW F´b =ACT. f b = Moment of Inertia=48.5in^4
1250psi>477.3psi OK
SHEAR
F´v = Fv(CD)(CM)(Ct)(CH)f v =1.5 V / A
F´v = 119psi>f v =72.94psi OK
DEFLECTION
5W L L^4
.=0.01in
384 E´ I OK
E´=E (C M)(C t)(C i)1700000psi
BEAM4X6
e max =L / 240 =0.15in
8
STRUCTURAL CALCULATIONS
BEAM DESIGN
BEAM #1
DOUGLAS FIR-LARCH No 1=Fb =1000psi
SPAN =10.0ftFv =95psi
TRIB. AREA =6.0ftE =1700000psi
Load Factor C D =1.25
Wet. Service Factor C M =1.00
D.L =19.0lb/ftTemperature Factor Ct =1.00
Size Factor C F =
L.L =20.0lb/ft1.00
TOTAL39.0lb/ftRepetitive m. Fact. Cr =1.00
Incising Factor Ci =1.00
Shear stress Factor C H =1.00W =234.0lb/ft
M=W x L² / 8
234lb/ft
M=2925.0ft-lb
M=35100in-lb
10.00ft
V=W x L / 2
BENDINGV=1170lb
F´b =Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci)
F´b =1250psiUSE
Req´d S = M / F´bS=28.08in^34X12Area =39.4in^2
f b =M/SSection=73.8in^3
ALLOW F´b =ACT. f b = Moment of Inertia=415in^4
1250psi>475.4psi OK
SHEAR
F´v = Fv(CD)(CM)(Ct)(CH)f v =1.5 V / A
F´v = 119psi>f v =44.57psi OK
DEFLECTION
5W L L^4
.=0.07in
384 E´ I OK
E´=E (C M)(C t)(C i)1700000psi
BEAM4X12
e max =L / 240 =0.50in
9
STRUCTURAL CALCULATIONS
BEAM DESIGN
BEAM #2
DOUGLAS FIR-LARCH No 1=Fb =1000psi
SPAN =12.0ftFv =95psi
TRIB. AREA =6.0ftE =1700000psi
Load Factor C D =1.25
Wet. Service Factor C M =1.00
D.L =15.0lb/ftTemperature Factor Ct =1.00
Size Factor C F =
L.L =20.0lb/ft1.00
TOTAL35.0lb/ftRepetitive m. Fact. Cr =1.00
Incising Factor Ci =1.00
Shear stress Factor C H =1.00W =210.0lb/ft
M=W x L² / 8
210lb/ft
M=3780.0ft-lb
M=45360in-lb
12.00ft
V=W x L / 2
BENDINGV=1260lb
F´b =Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci)
F´b =1250psiUSE
Req´d S = M / F´bS=36.29in^34X12Area =39.4in^2
f b =M/SSection=73.8in^3
ALLOW F´b =ACT. f b = Moment of Inertia=415in^4
1250psi>614.4psi OK
SHEAR
F´v = Fv(CD)(CM)(Ct)(CH)f v =1.5 V / A
F´v = 119psi>f v =47.99psi OK
DEFLECTION
5W L L^4
.=0.14in
384 E´ I OK
E´=E (C M)(C t)(C i)1700000psi
BEAM4X12
e max =L / 240 =0.60in
10
STRUCTURAL CALCULATIONS
BEAM DESIGN
BEAM #3
DOUGLAS FIR-LARCH No 1=Fb =1000psi
SPAN =8.0ftFv =95psi
TRIB. AREA =6.0ftE =1700000psi
Load Factor C D =1.25
Wet. Service Factor C M =1.00
D.L =15.0lb/ftTemperature Factor Ct =1.00
Size Factor C F =
L.L =20.0lb/ft1.00
TOTAL35.0lb/ftRepetitive m. Fact. Cr =1.00
Incising Factor Ci =1.00
Shear stress Factor C H =1.00W =210.0lb/ft
M=W x L² / 8
210lb/ft
M=1680.0ft-lb
M=20160in-lb
8.00ft
V=W x L / 2
BENDINGV=840lb
F´b =Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci)
F´b =1250psiUSE
Req´d S = M / F´bS=16.13in^34X12Area =39.4in^2
f b =M/SSection=73.8in^3
ALLOW F´b =ACT. f b = Moment of Inertia=415in^4
1250psi>273.1psi OK
SHEAR
F´v = Fv(CD)(CM)(Ct)(CH)f v =1.5 V / A
F´v = 119psi>f v =32.00psi OK
DEFLECTION
5W L L^4
.=0.03in
384 E´ I OK
E´=E (C M)(C t)(C i)1700000psi
BEAM4X12
e max =L / 240 =0.40in
11
STRUCTURAL CALCULATIONS
COLUMN DESIGN
Column =
DOUGLAS FIR-LARCH No 2=Fc =625psi
le =10.0ftE =1600000psi
LOAD1300lbLoad Factor C D =1.25
Wet. Serv Factor C M =
1.00
TOTAL1300.0lbBucking Stiffeners Ct =1.00
PSize Factor C F =1.00
Incising Factor Ci =1.00
K CE =0.30
Buckling and Crushing Interaction c =0.80
Fc* =Fc(CD)(CM)(Ct)(CF)(Cr)(Ci)
10.00
Fc* =781.25psi
USE
Euler Critical Buckling Stress for Columns4X6Area =19.3in^2
d =3.5in
F CE =K CE E =408.3333psi
(le / d)^2
Column Stability Factor Cp=
1 + F CE /Fc*1 + F CE/Fc*F CE / Fc*
Cp = ^2
2c2cc
Cp = 0.44934
F'c =Fc (CP)(CD)(CM)(Ct)(CF)(Cr)(Ci)
F'c =351psi
P = F'c *A =6757.59 OK P =1300.0
COLUMN4X6
12
STRUCTURAL CALCULATIONS
Wind Analysis for Low-rise Building, Based on ASCE 7-2016
LATERAL FORCE ANALYSIS
CBC 2019ASCE7-16.
W I N D :110 mph Exposure C
ENCLOSED qz= 0.00256X Kz Kzt Kd Ke V^2 I
INPUT DATA
Exposure category (B, C or D, ASCE 7-16 26.7.3)C
Importance factor (ASCE 7-16 Table 1.5-2)
I =1.00
w
Basic wind speed (ASCE 7-10 26.5.1 or 2012 IBC)V =110
Topographic factor (ASCE 7-10 26.8 & Table 26.8-1)
K =1.00
zt
Building height to eaveh =10
e
Building height to ridgeh =14
r
q = velocity pressure at mean roof height, h. (Eq. 28.3-1 page 298 & Eq. 30.3-1 page 316)
h
K = velocity pressure exposure coefficient evaluated at height, h, (Tab. 28.3-1, pg 299)=0.85
h
K = wind directionality factor. (Tab. 26.6-1, for building, page 250)=0.85
d
h = mean roof height< 60 ft, \[Satisfactory\](ASCE 7-16 26.2.1)=12.00
< Min (L, B), \[Satisfactory\](ASCE 7-16 26.2.2)
Ke = groumd elevation factor (1.0 per sec. 26.9 )
qz=22.38PSF 28.4.4 Minimum Design Wind load Sall BOT be Less than 16 lb/ ft2 multiplied by the wall area
8 lb/ ft2 multiplied by the Roof area of the building vertical plane
WIND LOAD = qz*(1E+2E+3E+4E +0.18)*H/2 +(Hr-He)
ANALYSISWIND LOAD=184# ft
p = q \[(G C )-(G C )\]
hpfpi
where:p = pressure in appropriate zone. (Eq. 28.3-1, page 311).p =16psf (ASCE 7-16 28.3.4)
min
G C = product of gust effect factor and external pressure coefficient, see table below. (Fig. 28.3-1, page 312 & 313)
p f
G C = product of gust effect factor and internal pressure coefficient.(Tab. 26.13-1, Enclosed Building, page 271)
p i
a = width of edge strips, Fig 28.4-1, note 9, page 301, MAX\[ MIN(0.1B, 0.1L, 0.4h), MIN(0.04B, 0.04L), 3\] =
Net Pressures (psf), Basic Load CasesNet Pressures (psf), Torsional Load Cases
Roof angle =15.64Roof angle =0.00Roof angle =15.64
Net Pressure withNet Pressure withNet Pressure with
SurfaceSurface
G CG CG C
p fp fp f
(+GC)(-GC)(+GC)(-GC)(+GC)(-GC)
p i p i p i p i p i p i
10.496.6814.37-0.45-13.47-5.771T0.491.673.59
2-0.69-18.60-10.90-0.69-18.60-10.902T-0.69-4.65-2.73
3-0.45-13.43-5.73-0.37-11.76-4.063T-0.45-3.36-1.43
4-0.39-12.17-4.48-0.45-13.47-5.774T-0.39-3.04-1.12
50.404.7012.40Roof angle =0.00
Surface
6-0.29-10.05-2.35 Net Pressure with
G C
p f
1E0.7412.0819.77-0.48-14.11-6.41(+GC)(-GC)
p i p i
2E-1.07-26.73-19.03-1.07-26.73-19.035T0.401.183.10
13
STRUCTURAL CALCULATIONS
Basic Load Case A (Transverse Direction)Basic Load Case B (Longitudinal Direction)
AreaArea
Pressure (k) withPressure (k) with
SurfaceSurface
22
(ft)(ft)
(+GC)(-GC)(+GC)(-GC)
p i p i p i p i
19906.6114.2322337-43.46-25.48
22337-43.46-25.4832337-27.48-9.49
32337-31.38-13.3956082.867.54
4990-12.05-4.436608-6.11-1.43
1E1101.332.182E260-6.94-4.94
2E260-6.94-4.943E260-3.94-1.94
3E260-4.57-2.575E1171.081.98
4E110-1.79-0.946E117-1.53-0.63
Horiz.17.8817.88Horiz.11.5711.57
Vert.-83.15-44.67Vert.-68.75-32.37
Min. windMin. wind
Horiz.28.8028.80Horiz.11.6011.60
28.4.428.4.4
Vert.-80.00-80.00Vert.-80.00-80.00
Torsional Load Case A (Transverse Direction)Torsional Load Case B (Longitudinal Direction)
AreaArea
Pressure (k) withTorsion (ft-k)Pressure (k) withTorsion (ft-k)
SurfaceSurface
22
(ft)(ft)
(+GC)(-GC)(+GC)(-GC)(+GC)(-GC)(+GC)(-GC)
p i p i p i p i p i p i p i p i
14402.946.326614222337-43.46-25.48-29-17
21038-19.32-11.32-117-6932337-27.48-9.49196
31038-13.94-5.95853652461.153.041129
4440-5.36-1.97121446246-2.47-0.58235
1E1101.332.1860982E260-6.94-4.948963
2E260-6.94-4.94-84-603E260-3.94-1.94-50-25
3E260-4.57-2.5755315E1171.081.982444
4E110-1.79-0.9480426E117-1.53-0.633414
1T5500.921.98-23-495T3630.431.12-5-13
2T1298-6.04-3.5441246T363-0.91-0.21-10-2
Total Horiz. Torsional Load, M
3T1298-4.36-1.86-29-13 T 104.6104.6
4T550-1.67-0.62-42-15
Total Horiz. Torsional Load, M
T 212212
Design pressures for components and cladding
p = q\[ (G C) - (G C)\]
hppi
where:p = pressure on component. (Eq. 30.4-1, pg 318)
p =16.00psf (ASCE 7-10 30.2.2)
min
G C = external pressure coefficient.
p
see table below. (ASCE 7-10 30.4.2)
EffectiveZone 1Zone 2Zone 3Zone 4Zone 5
2
Area (ft)
GC - GC GC - GC GC - GC GC - GC GC - GC
PPPPPPPPPP
Comp.280.41-0.860.41-1.480.41-2.330.92-1.020.92-1.24
Comp. & Cladding
Zone 1Zone 2Zone 3Zone 4Zone 5
Pressure
PositiveNegativePositiveNegativePositiveNegativePositiveNegativePositiveNegative
( psf )
16.00-22.1416.00-35.4216.00-53.7023.54-25.6823.54-30.41
14
STRUCTURAL CALCULATIONS
15
STRUCTURAL CALCULATIONS
16
STRUCTURAL CALCULATIONS
ASCE/SEI 7-16
DESIGN RESPONSE SPECTRUM.
TWO RESPONSE PERIODS (0.2s AND 1.0s)
SITE CLASS DEFINITION=D
OCCUPANCY CATEGORY =II
SEISMIC DESIGN CATEGORY =D
PALM DESERT CALIFORNIA92260
0.2 seg Ss = 150%g = 1.5g 1.0 seg S1 = 60%g = 0.60g
SDs= 2/3 * SMS = 2/3 * Fa * Ss SD1 = 2/3 * SM1 = 2/3 * Fv * S1
SMS = Fa * Ss SM1 = Fv * S1 SM1=1.02
SDs =1.20S1 =0.6
SD1 =0.68Fv =1.7 SECTION 11.4.8
R =6.5 TABLE 12.2 ASCE 7-16
IE =1.0
t=0.2
ASCE
BASE SHEAR V= Cs W 0.185W(12.8-1)
Cs = SDS / ( R/Ie)T<Ts 0.185(12.8-2)
NOT EXCEED
Cs = SD1 / T( R/Ie)Ts<T<TL 0.523(12.8-3)
NOT LESS THAN
Cs =0.01 0.010(12.8-5)
V=0.18W
17
STRUCTURAL CALCULATIONS
SEISMIC (CONTINUED)
D.L.
ROOF15psi
EXT. WALLS15
SEISMIC , V,=0.18WALL HT = 10ft
DIAPH=37x30
TRANSVERSELLONGITUDINAL
WORST37FTWORST30FT
ROOF =555ROOF =450
1Walls =751Walls =75
630525
X0.18X0.18
113.4# ft(MAX)94.5# ft(MAX)
SEISMIC =114PLF <184= WIND
W=184
T=C = WL^2 / 8b L=30=559.4594595
B =37
NAIL =TABLE 23-III-C-2
TOTAL NAIL = LOAD /NAIL=2.983
PROVIDE ( 8 PAIR) 16 d COMMON
@ E.A 4'-0" SPACE @ TOP CHORDS
18
STRUCTURAL CALCULATIONS
19
STRUCTURAL CALCULATIONS
SHEAR WALL CONSTRUCTION
NAILS (1 1/23/8
LONG ANCHOR BOLTS
(w/ 330.229-
(ALLOWABLE LOAD: 75 plf PER CBC 2019 TABLE 2306.3(3)
AT
THICK PLATE WASHERS SDC D
FRAMING
(ALLOWABLE LOAD: 180 plf PER CBC 2019 TABLE 2306.3(3)
THE NEXT THREE (3) SHEAR WALL TYPES SHALL ALL HAVE THE FOLLOWING IDENTICAL
STRUCTURAL I WOOD PANEL DIAPHRAGM: (WALL1 , 2 & 3 ONLY)
3/8-D EXPOSURE I APA PLYWOOD ORIENTED STRAND BOARD APPLIED DIRECTLY TO
THE STUDS, WITH THE LONG DIMENSION OF FULL PANELS LAID PARALLEL OR PERPENDICULAR
TO THE LENGTH OF THE STUDS, ALL EDGES OF EACH PANEL SUPPORTED ON STUDS, SILLS,
PLATES OR BLOCKING AND NAILED AND ANCHORED AS FOLLOWS:
1
FIELDS. ANCHOR WITH
(ALLOWABLE LOAD: 260 plf PER 2018 NDS SDPWS TABLE) *
CONSTRUCTION NOTE(S) 1 & 2 APPLY (NOTES 3, 4 AND 6 APPLY ONLY WHEN DIAPHRAGM
AT BOTH SIDES )
2
FIELDS. ANCHOR WITH
(CALCULATE TO MAXIMUM OF 380 plf PER 2018 NDS SDPWS TABLE)
CONSTRUCTION NOTE(S) 1 & 2 APPLY (NOTES 3, 4, 5 AND 6 APPLY WHEN DIAPHRAGM AT
BOTH SIDES)
3
FIELDS. ANCHOR WITH 5/8
(ALLOWABLE LOAD: 490 plf PER 2018 NDS SDPWS TABLE ) *
CONSTRUCTION NOTE(S) 1, 2, 3 & 6 APPLY (NOTES 4 & 5 APPLY WHEN DIAPHRAGM AT
BOTH SIDES)
* NOTE VALUES ARE AP
20
STRUCTURAL CALCULATIONS
21
STRUCTURAL CALCULATIONS
FOUNDATION
POST
FOOTING
12"
18"4"18"
40" X 12" = 480SQ IN3.3333
144SQ IN
SOIL PRESSURE =1000PSF
TOTAL LOAD =3,300.#>2925#OK
22
STRUCTURAL CALCULATIONS
5/8" SET-XP EPOXY ADHESIVE ANCHOR ASTEM 193 GRADE B7
hef= 10"
calculate static steel strength tension
per ACI 318-14 sect D 5.1.
SA N sa = 0.75x 27900= 20925#
calculate static concrete breakout
strength in tension
per ACI 318-14 sect D 5.2.
SA N sa = 0.65x 6000 = 3900#
calculate static pullout strength in
tension per ACI 318-14 SECT D.5.3
as amended in section 4.1.4 of this repost
p N a = 0.65x 25175 = 16360#
ACI 318-11 SECT D.4.1.2
N
3900/1.48 = 2635 #
23
STRUCTURAL CALCULATIONS
24
STRUCTURAL CALCULATIONS
25
STRUCTURAL CALCULATIONS
DERIVE GRADE BEAM
ASSUME =2500 PSI CONC
LINE
5# 5TOP & BOTT
DATAS:ACI318
FT
Lsw2Fy=60KSIAs min=
FT
Larm2Fc=3000PSI0.00141.6128in2
IN
h=36d=33IN0.00182.0736in2
IN
B=32AS=1.55in25# 50.0022.304in2
TOP & BOTT5# 53.100in2
OVERTURNIG MOMENT:RESISTING DEAD LOAD:P: ROOF+WALL+GR. BEAM
ft
H=8
KIP #
p=2.3ROOF=4200P=11740Lb
kip*ft#
Mo=18.4WALL=340PU=0.9*P
#
GR. BEAM=7200PU=10566Lb
MU= 1.4*Mo
KIP FT.
MU=25.76
RESISTING MOMENT:L=6
kip*ft
MO=18.4
Mr=0.9*P*L/2OVERTURNING STABILITY RATION
KIP*FT
Mr=31.698>MO=18.4000 OK 1.72272: 1 OK 1.5:1
SOIL BEARING PRESSURE:
L req= 6*e9.403748FT
e=Mo/P 1.56729 FTqmax= 2*P / 3*B*eo<ALLOWABLE BEARING
eo=L/2-e 1.43271 FTqmax=2048.567PSFPRESSURE 2500 PSF
FACTORED EARTH PRESSURE:
eu=MU/PU 2.43801 ftqu_max= 2*p / 3*B*eoqu_p= qu_max- ( qu_max) (larm)
euo=L/2-eu 0.56199 ftqu_max= 4700.250758psf3*euo
qu_p=-875.459psf
Mu=qu_p* Larm^2 + (qu_max-qu_p) * larm^2 * B Mu=5.243257161
2 6kip ft
Vu=qu_p + qu_max *(Larm)*B Vu=10199.4
2lb.
REINFORCING STEEL:
AS=1.55a= AS FY1.1in
0.85 F'C*B
Mn=0.9*As*Fy*(d-a/2)Mn=226.2002757kip ft>5.24kip ftOK
Vc=0.85*2*B*d 2500Vc=98.32715352kip>10.1994kipOK
PROVIDE 32IN WIIDE X36IN DEEP 6 FT LONG FOOTING
WITH5# 5TOP AND BOTTOM CONT.
26
STRUCTURAL CALCULATIONS
DERIVE GRADE BEAM
ASSUME =2500 PSI CONC
LINE
5# 5TOP & BOTT
DATAS:ACI318
FT
Lsw2Fy=60KSI As min=
FT
Larm2Fc=3000PSI 0.00141.6128in2
IN
h=36d=33IN 0.00182.0736in2
IN
B=32AS=1.55 in25# 50.0022.304in2
TOP & BOTT5# 53.100in2
OVERTURNIG MOMENT:RESISTING DEAD LOAD:P: ROOF+WALL+GR. BEAM
ft
H=9
KIP #
p=1.8ROOF=4200P=11740Lb
kip*ft#
Mo=16.2WALL=340PU=0.9*P
#
GR. BEAM=7200PU=10566Lb
MU= 1.4*Mo
KIP FT.
MU=22.68
RESISTING MOMENT:L=6
kip*ft
MO=16.2
Mr=0.9*P*L/2OVERTURNING STABILITY RATION
KIP*FT
Mr=31.698>MO=16.2000 OK 1.95667: 1 OK 1.5:1
SOIL BEARING PRESSURE:
L req= 6*e8.279387 FT
e=Mo/P 1.3799 FT qmax= 2*P / 3*B*eo<ALLOWABLE BEARING
eo=L/2-e 1.6201 FT qmax=1811.614 PSF PRESSURE 2500 PSF
FACTORED EARTH PRESSURE:
eu=MU/PU 2.14651 ftqu_max= 2*p / 3*B*eoqu_p= qu_max- ( qu_max) (larm)
euo=L/2-eu 0.85349 ftqu_max= 3094.931138psf3*euo
qu_p=677.467psf
Mu=qu_p* Larm^2 + (qu_max-qu_p) * larm^2 * B Mu=7.910870039
2 6kip ft
Vu=qu_p + qu_max *(Larm)*B Vu=10059.7
2lb.
REINFORCING STEEL:
AS=1.55a= AS FY1.1in
0.85 F'C*B
Mn=0.9*As*Fy*(d-a/2)Mn=226.2002757kip ft>7.91kip ftOK
Vc=0.85*2*B*d 2500Vc=98.32715352kip>10.0597kipOK
PROVIDE 32IN WIIDE X36IN DEEP 6 FT LONG FOOTING
WITH5# 5TOP AND BOTTOM CONT.
27
STRUCTURAL CALCULATIONS
28
STRUCTURAL CALCULATIONS