Loading...
HomeMy WebLinkAboutStructural CalculationsProject : Project Number: By : Date : UNIRAC 1411 Broadway Blvd, NE Albuquerque, NM 87102 RE: Richard Kain To Whom it May Concern, CODE REFERENCES: BUILDING CODE: 2022 CALIFORNIA BUILDING CODE 2021 INTERNATIONAL BUILDING CODE ASCE 7-16 SCOPE OF WORK: DESIGN PARAMETERS RISK/OCCUPANCY CATEGORY : ROOF DEAD LOAD :psf ROOF LIVE LOAD :psf DESIGN WIND SPEED :mph WIND EXPOSURE : GROUND SNOW LOAD :psf SEISMIC DESIGN CATEGORY : EXISTING ROOF STRUCTURE ROOF :4x6 Rafters @ 30" O.C. ROOF MATERIAL :Comp Shingle EXISTING WALL STUDS WALL STUDS :2x4 @ 16" O.C. WALL STUD MATERIAL :Wood Studs Per your request, we have reviewed the existing structure at the above referenced site. The purpose of our review was to determine the adequacy of the existing structure to support the proposed installation of solar panels on the roof per layout plan. Roof structural framing plan has been reviewed for additional loading due to installation of the roof mounted solar PV addition. The structural review that follows, including plans and calculations, only apply to the section of the roof that is directly supporting the solar PV system and its supporting elements. Richard Kain PE 30-05-2023 Tuesday, May 30, 2023 45585 Abronia Trail, Palm Desert, CA 92260, USA 0 *null II 97 B 8 20 Page 1 CONNECTION TO STRUCTURE OBSERVED CONDITIONS: CONCLUSIONS: LIMITATIONS: Praneet R Erusu, P.E. Principal Engineer Erusu Consultants US Inc. Installation of the solar panels must be performed in accordance with manufacturer recommendations. All work performed must be in accordance with accepted industry-wide methods and applicable safety standards. Existing Roof and structural members are assumed to be in good and serviceable condition. The contractor must notify Erusu Consultants US Inc. should any damage, deterioration or discrepancies between the as-built condition of the structure and the condition described in this letter be found. The use of solar panel support span tables provided by others are allowed only where the building type, site conditions, site-specific design parameters, and solar panel configuration match the description of the span tables. The design of the solar panel racking (mounts, rails, etc.) and electrical engineering is the responsibility of others. Waterproofing around the roof penetrations is the responsibility of others. Erusu Consultants US Inc. assumes no responsibility for improper installation of the solar array. MOUNTING CONNECTION : Based upon our review, we conclude that the existing structure is adequate to support the proposed solar panel installation. In the area of the solar array, other live loads will not be present or will be greatly reduced (2022 CBC, Section 1607.14.4). The gravity loads and the stresses of the structural elements, in the area of the solar array are either decreased or increased by no more than 5%. Therefore, the requirements of Section 503.3 of the 2022 CEBC are met and the structure is permitted to remain unaltered. The solar array will be flush-mounted (no more than 6" above the roof surface) and parallel to the roof surface. Thus, we conclude that any additional wind loading on the structure related to the addition of the proposed solar array is negligible. The attached calculations verify the capacity of the connections of the solar array to the existing roof against wind (uplift), the governing load case. Regarding seismic loads, we conclude that any additional forces will be small. Conservatively neglecting the weight of existing wall materials, the installation of the solar panels represents an increase in the total weight (and resulting seismic load) of 9.8%. Because the increase in lateral forces is less than 10%, this addition meets the requirements of the exception in Section 503.4 of the 2022 CEBC. Thus the existing lateral force resisting system is permitted to remain unaltered. (1) 5/16" SS LAG BOLT w/ MIN. 2.5" EMBEDMENT INTO (E) 2x FRAMING MEMBER @ MAX. 60" o.c. ALONG RAILS (2) RAILS PER ROW OF PANELS, EVENLY SPACED. PANEL LENGTH PERPENDICULAR TO RAIL NOT TO EXCEED 67.8". (4) 1/4" LAG BOLTS w/ MIN. 2.5" EMBEDMENT (2 TOP & 2 BOTTOM) INTO (E) STUDS, USING 2 STUDS MINIMUM FOR TESLA POWERWALL SINGLE STACK. The observed roof framing is described below. If field conditions differ, the contractor shall notify the engineer prior to starting construction. The roof framing is supported by 4x6 Rafters @ 30" O.C are spanning between load bearing walls. The maximum allowed clear span of rafter is 8.5ft, to be verified in field by the contractor. 30 May 2023 EXP : 30 Sep 2023 Page 2 Project : Project Number: By : Date : Address :45585 Abronia Trail, Palm Desert, CA 92260, USA Site Plan: Richard Kain PE 30-05-2023 Page 3 Project : Project Number: By : Date : Roof Dead Load Roof Slope = : Angle = Roof Live Load Roof Live Load, Lo = psf (Refer ASCE 7-16, Table 4.3-1) Roof Live Load with PV Array = psf 2022 CBC, Section 1607.14.4 (Ceiling load and MEP is assumed to be not supported by rafters) DL = 8.19 20 0 Framing 1.15 1.02 1.18 PV Array 3 1.02 3.07 Vaulted Ceiling 0 1.02 0.00 MEP & Misc. 0.85 1.02 0.87 Comp Shingle 4 1.02 4.09 1/2" Plywood Deck 2 1.02 2.05 2.6 12 Plan Projected Material Weight (psf) Richard Kain PE 30-05-2023 12 Material Material Weight (psf) Increase due to Roof Slope Page 4 Project : Project Number: By : Date : Richard Kain PE 30-05-2023 Summary of Gravity Loads Dead Load, D = psf Roof Live Load, Lr = psf Gravity Load Comparison (D + Lr)/Cd = psf (Cd = 0.9 for D, 1.15 for S, 1.25 for Lr) Max Loading = psf Proposed to Current Loading Ratio = Gravity Loading with PV Array is not stressing the current framing system by more that 5% of the original configuration. Per Section 503.3 of 2022 California Existing Building Code the structure is allowed to remain unaltered for gravity loading. 25.10 12.51 50%< 105%O.K. Existing With PV Array 25.10 12.51 8.19 11.26 20.00 0.00 Existing With PV Array Page 5 Project : Project Number: By : Date : Wind Load Calculation Wind Loads - ASCE 7-16 Chapter 26 & 29 Risk Category = V = mph Exposure = Average height of building, z = ft - avg (Approximate) ft (Refer ASCE 7-16, Table 26.10-1) α =Zg =ft (Refer ASCE 7-16, Table 26.11-1) Kh & Kz =2.01(z/Zg)^(2/α) = Kzt =(Refer ASCE 7-16, Equation 26.8-1) Kd =(Refer ASCE 7-16, Table 26.6.1) Ke =(Refer ASCE 7-16, Table 26.9-1) qh ='.00256 KzKztKdKeV² =psf (Refer ASCE 7-16, Section 26.10-1) Building Classification = Solar Panel Components and Cladding p C&C = qh(GCp)(ϒe)(ϒa)ASCE 7-16 Chapter 29.4.4 Module Length =in Module Width =in Area of Module =ft2 Roof Pitch =: Slope =degrees Gable Roof = ϒe= ϒa= (Refer ASCE 7-16, Figure 29.4-8) 12 12 21.0 67.80 7° < θ ≤ 20° 1.5 11.77 2.6 44.6 97 B 15 0.57 Enclosed 0.8 1200 zmin = 30 7 1 1 0.85 II Richard Kain PE 30-05-2023 Page 6 Project : Project Number: By : Date : Richard Kain PE 30-05-2023 Zone 1 Uplift External Wind pressure coefficient GCp = External Wind pressure, qGCp = psf Zone 2 Uplift External Wind pressure coefficient GCp = External Wind pressure, qGCp = psf All Zone Downward External Wind pressure coefficient GCp = External Wind pressure, qGCp = psf Maximum Uplift Wind Pressure, p = psf Minimum Downward Wind Pressure ,p =psf Lag Screw / Bolt Connection Check (ASD) for Portrait Tributary Width =in (Max Spacing of fasteners along Rails) Tributary Length =in (Half Panel Length) Tributary Area =ft2 Lag Screw/Bolt Size = Cd =(Refer NDS Table 2.3.2) Embedment = in Grade of Wood = #2 ( or better) G = Capacity = lb/in (Refer NDS Table 12.2A) Number of Screws in Tension = Prying Coefficient = Capacity of Fasteners = lb Demand Zone 1 Zone 2 0.41 Pressure ASD (0.6W)(psf) -16.9 -22.0 14.1 311.1 760 DCR 14.1 239.3 760 0.31 Capacity (lb)Tributary Area (ft2) Uplift (lb)Zone 0.5 266 1 1.4 760 60 0.5 7.1 (Measured from top of the framing member to tapered tip of lag screw, embedment in sheathing and tapered tip of screw is not included) DF -36.71 -2 -28.24 -36.71 16.0 33.90 14.1 5/16 1.6 2.5 -2.6 Page 7 Project : Project Number: By : Date : Richard Kain PE 30-05-2023 Lag Screw / Bolt Connection Check (ASD) for Landscape Tributary Width =in (Max Spacing of fasteners along Rails) Tributary Length =in (Half Panel Length) Tributary Area =ft2 Lag Screw/Bolt Size = Cd =(Refer NDS Table 2.3.2) Embedment = in Grade of Wood = #2 ( or better) G = Capacity = lb/in (Refer NDS Table 12.2A) Number of Screws in Tension = Prying Coefficient = Capacity of Fasteners = lb Demand 60 22.3 9.3 5/16 1.6 2.5 (Measured from top of the framing member to tapered tip of lag screw, embedment in sheathing and tapered tip of screw is not included) DF 0.5 266 1 1.4 760 Zone Pressure ASD (0.6W)(psf) Tributary Area (ft 2) Uplift (lb) Capacity (lb) DCR Zone 1 -16.9 9.3 157.4 760 0.21 0.27Zone 2 -22.0 9.3 204.7 760 Page 8 Wood Beam LIC# : KW-06014559, Build:20.23.05.01 ERUSU CONSULTANTS US (c) ENERCALC INC 1983-2023 DESCRIPTION:4x6 Rafters @ 30" o.c. (Wind Condition_Downward) (Strength Check) Project File: 4x6 Joist @ 30 o.c_Copy.ec6 Project Title: Engineer: Project ID: Project Descr: CODE REFERENCES Calculations per NDS 2018, IBC 2021, ASCE 7-16 Load Combination Set : ASCE 7-16 Material Properties Beam Bracing :Beam is Fully Braced against lateral-torsional buckling Repetitive Member Stress Increase Allowable Stress Design Douglas Fir-Larch No.2 900.0 900.0 1,350.0 625.0 1,600.0 580.0 180.0 575.0 31.210 Analysis Method : Eminbend - xx ksi Wood Species : Wood Grade : Fb + psi psi Fv psi Fb - Ft psi Fc - Prll psi psiFc - Perp E : Modulus of Elasticity Ebend- xx ksi Density pcf Load Combination :ASCE 7-16 .Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Load for Span Number 1 Uniform Load : D = 0.00810 ksf, Tributary Width = 2.50 ft, (Existing Roof Dead Load) Point Load : D = 0.0420, W = 0.2260 k @ 2.50 ft, (Solar Panel Load) Point Load : D = 0.420, W = 0.2260 k @ 5.80 ft, (Solar Panel Load) Uniform Load : Lr = 0.020, W = 0.0160 ksf, Extent = 0.0 -->> 1.50 ft, Tributary Width = 2.50 ft, (Existing Wind & Roof Live Load) Load for Span Number 2 Uniform Load : D = 0.00810, Lr = 0.020, W = 0.0160 ksf, Tributary Width = 2.50 ft, (Existing Roof Load) .DESIGN SUMMARY Design OK Maximum Bending Stress Ratio 0.526: 1 Load Combination +D+H Span # where maximum occurs Span # 1 Location of maximum on span 5.793ft 29.70 psi= = 1,210.95 psi 4x6Section used for this span Span # where maximum occurs Location of maximum on span Span # 1= Load Combination +D+H = = = 162.00 psi== Section used for this span 4x6 Maximum Shear Stress Ratio 0.183 : 1 8.073 ft= = 637.54 psi Maximum Deflection 708 >=180 519 Ratio =328 >=120 Max Downward Transient Deflection 0.101 in 1013Ratio =>=180 Max Upward Transient Deflection -0.068 in Ratio = Max Downward Total Deflection 0.196 in Ratio =>=120 Max Upward Total Deflection -0.146 in fb: Actual F'b fv: Actual F'v Span: 2 : Lr Only Span: 2 : W Only Span: 1 : +D+0.60W+H Span: 2 : +D+0.60W+H .Maximum Forces & Stresses for Load Combinations Span # Moment ValuesLoad Combination C iCLx CCCMCF rt Shear ValuesMax Stress Ratios M CDV fbM fvF'b V F'vSegment Length Cfu +D+H 0.0 0.00 0.00.0 1.00Length = 8.50 ft 1 0.526 0.183 0.90 1.300 1.151.00 1.00 0.94 637.5 1,211.0 0.38 162.01.00 29.71.00 1.00Length = 2.0 ft 2 0.023 0.183 0.90 1.300 1.151.00 1.00 0.04 27.5 1,211.0 0.03 162.01.00 29.71.00 1.00+D+L+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00 1.00Length = 8.50 ft 1 0.474 0.165 1.00 1.300 1.151.00 1.00 0.94 637.5 1,345.5 0.38 180.01.00 29.71.00 Page 9 Wood Beam LIC# : KW-06014559, Build:20.23.05.01 ERUSU CONSULTANTS US (c) ENERCALC INC 1983-2023 DESCRIPTION:4x6 Rafters @ 30" o.c. (Wind Condition_Downward) (Strength Check) Project File: 4x6 Joist @ 30 o.c_Copy.ec6 Project Title: Engineer: Project ID: Project Descr: Maximum Forces & Stresses for Load Combinations Span # Moment ValuesLoad Combination C iCLx CCCMCF rt Shear ValuesMax Stress Ratios M CDV fbM fvF'b V F'vSegment Length Cfu 1.00Length = 2.0 ft 2 0.020 0.165 1.00 1.300 1.151.00 1.00 0.04 27.5 1,345.5 0.03 180.01.00 29.71.00 1.00+D+Lr+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00 1.00Length = 8.50 ft 1 0.359 0.138 1.25 1.300 1.151.00 1.00 0.89 603.4 1,681.9 0.40 225.01.00 31.11.00 1.00Length = 2.0 ft 2 0.057 0.138 1.25 1.300 1.151.00 1.00 0.14 95.5 1,681.9 0.11 225.01.00 31.11.00 1.00+D+S+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00 1.00Length = 8.50 ft 1 0.412 0.143 1.15 1.300 1.151.00 1.00 0.94 637.5 1,547.3 0.38 207.01.00 29.71.00 1.00Length = 2.0 ft 2 0.018 0.143 1.15 1.300 1.151.00 1.00 0.04 27.5 1,547.3 0.03 207.01.00 29.71.00 1.00+D+0.750Lr+0.750L+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00 1.00Length = 8.50 ft 1 0.364 0.137 1.25 1.300 1.151.00 1.00 0.90 611.9 1,681.9 0.39 225.01.00 30.81.00 1.00Length = 2.0 ft 2 0.047 0.137 1.25 1.300 1.151.00 1.00 0.12 78.5 1,681.9 0.09 225.01.00 30.81.00 1.00+D+0.750L+0.750S+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00 1.00Length = 8.50 ft 1 0.412 0.143 1.15 1.300 1.151.00 1.00 0.94 637.5 1,547.3 0.38 207.01.00 29.71.00 1.00Length = 2.0 ft 2 0.018 0.143 1.15 1.300 1.151.00 1.00 0.04 27.5 1,547.3 0.03 207.01.00 29.71.00 1.00+D+0.60W+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00 1.00Length = 8.50 ft 1 0.401 0.141 1.60 1.300 1.151.00 1.00 1.27 864.2 2,152.8 0.52 288.01.00 40.71.00 1.00Length = 2.0 ft 2 0.028 0.141 1.60 1.300 1.151.00 1.00 0.09 60.2 2,152.8 0.07 288.01.00 40.71.00 1.00+D+0.750Lr+0.750L+0.450W+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00 1.00Length = 8.50 ft 1 0.363 0.136 1.60 1.300 1.151.00 1.00 1.15 781.9 2,152.8 0.50 288.01.00 39.01.00 1.00Length = 2.0 ft 2 0.048 0.136 1.60 1.300 1.151.00 1.00 0.15 103.0 2,152.8 0.12 288.01.00 39.01.00 1.00+D+0.750L+0.750S+0.450W+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00 1.00Length = 8.50 ft 1 0.375 0.132 1.60 1.300 1.151.00 1.00 1.19 807.6 2,152.8 0.49 288.01.00 38.01.00 1.00Length = 2.0 ft 2 0.024 0.132 1.60 1.300 1.151.00 1.00 0.08 52.0 2,152.8 0.06 288.01.00 38.01.00 1.00+0.60D+0.60W+0.60H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00 1.00Length = 8.50 ft 1 0.283 0.100 1.60 1.300 1.151.00 1.00 0.90 609.2 2,152.8 0.37 288.01.00 28.81.00 1.00Length = 2.0 ft 2 0.023 0.100 1.60 1.300 1.151.00 1.00 0.07 49.2 2,152.8 0.06 288.01.00 28.81.00 1.00+D+0.70E+0.60H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00 1.00Length = 8.50 ft 1 0.296 0.103 1.60 1.300 1.151.00 1.00 0.94 637.5 2,152.8 0.38 288.01.00 29.71.00 1.00Length = 2.0 ft 2 0.013 0.103 1.60 1.300 1.151.00 1.00 0.04 27.5 2,152.8 0.03 288.01.00 29.71.00 1.00+D+0.750L+0.750S+0.5250E+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00 1.00Length = 8.50 ft 1 0.296 0.103 1.60 1.300 1.151.00 1.00 0.94 637.5 2,152.8 0.38 288.01.00 29.71.00 1.00Length = 2.0 ft 2 0.013 0.103 1.60 1.300 1.151.00 1.00 0.04 27.5 2,152.8 0.03 288.01.00 29.71.00 1.00+0.60D+0.70E+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00 1.00Length = 8.50 ft 1 0.178 0.062 1.60 1.300 1.151.00 1.00 0.56 382.5 2,152.8 0.23 288.01.00 17.81.00 1.00Length = 2.0 ft 2 0.008 0.062 1.60 1.300 1.151.00 1.00 0.02 16.5 2,152.8 0.02 288.01.00 17.81.00 . Location in SpanLoad CombinationMax. "-" Defl Location in SpanLoad Combination Span Max. "+" Defl Overall Maximum Deflections +D+0.60W+H 1 0.1963 4.416 0.0000 0.000 +D+0.60W+H20.0000 4.416 -0.1458 2.000 . Load Combination Support 1 Support 2 Support 3 Vertical Reactions Support notation : Far left is #1 Values in KIPS Max Upward from all Load Conditions 0.411 0.661 Max Upward from Load Combinations 0.411 0.661 Max Upward from Load Cases 0.277 0.430 +D+H 0.244 0.430 +D+L+H 0.244 0.430 +D+Lr+H 0.301 0.549 +D+S+H 0.244 0.430 +D+0.750Lr+0.750L+H 0.287 0.519 +D+0.750L+0.750S+H 0.244 0.430 Page 10 Wood Beam LIC# : KW-06014559, Build:20.23.05.01 ERUSU CONSULTANTS US (c) ENERCALC INC 1983-2023 DESCRIPTION:4x6 Rafters @ 30" o.c. (Wind Condition_Downward) (Strength Check) Project File: 4x6 Joist @ 30 o.c_Copy.ec6 Project Title: Engineer: Project ID: Project Descr: Load Combination Support 1 Support 2 Support 3 Vertical Reactions Support notation : Far left is #1 Values in KIPS +D+0.60W+H 0.410 0.620 +D+0.750Lr+0.750L+0.450W+H 0.411 0.661 +D+0.750L+0.750S+0.450W+H 0.369 0.572 +0.60D+0.60W+0.60H 0.313 0.447 +D+0.70E+0.60H 0.244 0.430 +D+0.750L+0.750S+0.5250E+H 0.244 0.430 +0.60D+0.70E+H 0.147 0.258 D Only 0.244 0.430 Lr Only 0.057 0.118 W Only 0.277 0.315 H Only Page 11 Wood Beam LIC# : KW-06014559, Build:20.23.05.01 ERUSU CONSULTANTS US (c) ENERCALC INC 1983-2023 DESCRIPTION:4x6 Rafters @ 30" o.c. (Wind Condition_Uplift) (Strength Check) Project File: 4x6 Joist @ 30 o.c_Copy.ec6 Project Title: Engineer: Project ID: Project Descr: CODE REFERENCES Calculations per NDS 2018, IBC 2021, ASCE 7-16 Load Combination Set : ASCE 7-16 Material Properties Beam Bracing :Beam is Fully Braced against lateral-torsional buckling Repetitive Member Stress Increase Allowable Stress Design Douglas Fir-Larch No.2 900.0 900.0 1,350.0 625.0 1,600.0 580.0 180.0 575.0 31.210 Analysis Method : Eminbend - xx ksi Wood Species : Wood Grade : Fb + psi psi Fv psi Fb - Ft psi Fc - Prll psi psiFc - Perp E : Modulus of Elasticity Ebend- xx ksi Density pcf Load Combination :ASCE 7-16 .Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Load for Span Number 1 Uniform Load : D = 0.00810 ksf, Tributary Width = 2.50 ft, (Existing Roof Dead Load) Point Load : D = 0.0420, W = -0.5190 k @ 2.50 ft, (Solar Panel Load) Point Load : D = 0.420, W = -0.5190 k @ 5.80 ft, (Solar Panel Load) Uniform Load : Lr = 0.020, W = -0.0370 ksf, Extent = 0.0 -->> 1.50 ft, Tributary Width = 2.50 ft, (Existing Wind & Roof Live Load) Load for Span Number 2 Uniform Load : D = 0.00810, Lr = 0.020, W = -0.0370 ksf, Tributary Width = 2.50 ft, (Existing Roof Load) .DESIGN SUMMARY Design OK Maximum Bending Stress Ratio 0.526: 1 Load Combination +D+H Span # where maximum occurs Span # 1 Location of maximum on span 5.793ft 29.70 psi= = 1,210.95 psi 4x6Section used for this span Span # where maximum occurs Location of maximum on span Span # 1= Load Combination +D+H = = = 162.00 psi== Section used for this span 4x6 Maximum Shear Stress Ratio 0.183 : 1 8.073 ft= = 637.54 psi Maximum Deflection 441 >=180 748 Ratio =456 >=120 Max Downward Transient Deflection 0.155 in 308Ratio =>=180 Max Upward Transient Deflection -0.231 in Ratio = Max Downward Total Deflection 0.136 in Ratio =>=120 Max Upward Total Deflection -0.105 in fb: Actual F'b fv: Actual F'v Span: 2 : W Only Span: 1 : W Only Span: 2 : +0.60D+0.60W+0.60H Span: 2 : +D+H .Maximum Forces & Stresses for Load Combinations Span # Moment ValuesLoad Combination C iCLx CCCMCF rt Shear ValuesMax Stress Ratios M CDV fbM fvF'b V F'vSegment Length Cfu +D+H 0.0 0.00 0.00.0 1.00Length = 8.50 ft 1 0.526 0.183 0.90 1.300 1.151.00 1.00 0.94 637.5 1,211.0 0.38 162.01.00 29.71.00 1.00Length = 2.0 ft 2 0.023 0.183 0.90 1.300 1.151.00 1.00 0.04 27.5 1,211.0 0.03 162.01.00 29.71.00 1.00+D+L+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00 1.00Length = 8.50 ft 1 0.474 0.165 1.00 1.300 1.151.00 1.00 0.94 637.5 1,345.5 0.38 180.01.00 29.71.00 Page 12 Wood Beam LIC# : KW-06014559, Build:20.23.05.01 ERUSU CONSULTANTS US (c) ENERCALC INC 1983-2023 DESCRIPTION:4x6 Rafters @ 30" o.c. (Wind Condition_Uplift) (Strength Check) Project File: 4x6 Joist @ 30 o.c_Copy.ec6 Project Title: Engineer: Project ID: Project Descr: Maximum Forces & Stresses for Load Combinations Span # Moment ValuesLoad Combination C iCLx CCCMCF rt Shear ValuesMax Stress Ratios M CDV fbM fvF'b V F'vSegment Length Cfu 1.00Length = 2.0 ft 2 0.020 0.165 1.00 1.300 1.151.00 1.00 0.04 27.5 1,345.5 0.03 180.01.00 29.71.00 1.00+D+Lr+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00 1.00Length = 8.50 ft 1 0.359 0.138 1.25 1.300 1.151.00 1.00 0.89 603.4 1,681.9 0.40 225.01.00 31.11.00 1.00Length = 2.0 ft 2 0.057 0.138 1.25 1.300 1.151.00 1.00 0.14 95.5 1,681.9 0.11 225.01.00 31.11.00 1.00+D+S+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00 1.00Length = 8.50 ft 1 0.412 0.143 1.15 1.300 1.151.00 1.00 0.94 637.5 1,547.3 0.38 207.01.00 29.71.00 1.00Length = 2.0 ft 2 0.018 0.143 1.15 1.300 1.151.00 1.00 0.04 27.5 1,547.3 0.03 207.01.00 29.71.00 1.00+D+0.750Lr+0.750L+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00 1.00Length = 8.50 ft 1 0.364 0.137 1.25 1.300 1.151.00 1.00 0.90 611.9 1,681.9 0.39 225.01.00 30.81.00 1.00Length = 2.0 ft 2 0.047 0.137 1.25 1.300 1.151.00 1.00 0.12 78.5 1,681.9 0.09 225.01.00 30.81.00 1.00+D+0.750L+0.750S+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00 1.00Length = 8.50 ft 1 0.412 0.143 1.15 1.300 1.151.00 1.00 0.94 637.5 1,547.3 0.38 207.01.00 29.71.00 1.00Length = 2.0 ft 2 0.018 0.143 1.15 1.300 1.151.00 1.00 0.04 27.5 1,547.3 0.03 207.01.00 29.71.00 1.00+D+0.60W+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00 1.00Length = 8.50 ft 1 0.081 0.044 1.60 1.300 1.151.00 1.00 0.26 175.4 2,152.8 0.16 288.01.00 12.81.00 1.00Length = 2.0 ft 2 0.022 0.044 1.60 1.300 1.151.00 1.00 0.07 47.9 2,152.8 0.05 288.01.00 12.81.00 1.00+D+0.750Lr+0.750L+0.450W+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00 1.00Length = 8.50 ft 1 0.103 0.041 1.60 1.300 1.151.00 1.00 0.33 221.6 2,152.8 0.15 288.01.00 11.81.00 1.00Length = 2.0 ft 2 0.010 0.041 1.60 1.300 1.151.00 1.00 0.03 21.9 2,152.8 0.02 288.01.00 11.81.00 1.00+D+0.750L+0.750S+0.450W+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00 1.00Length = 8.50 ft 1 0.115 0.044 1.60 1.300 1.151.00 1.00 0.36 247.3 2,152.8 0.16 288.01.00 12.61.00 1.00Length = 2.0 ft 2 0.014 0.044 1.60 1.300 1.151.00 1.00 0.04 29.1 2,152.8 0.03 288.01.00 12.61.00 1.00+0.60D+0.60W+0.60H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00 1.00Length = 8.50 ft 1 0.151 0.059 1.60 1.300 1.151.00 1.00 0.48 325.0 2,152.8 0.22 288.01.00 16.91.00 1.00Length = 2.0 ft 2 0.027 0.059 1.60 1.300 1.151.00 1.00 0.09 59.0 2,152.8 0.07 288.01.00 16.91.00 1.00+D+0.70E+0.60H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00 1.00Length = 8.50 ft 1 0.296 0.103 1.60 1.300 1.151.00 1.00 0.94 637.5 2,152.8 0.38 288.01.00 29.71.00 1.00Length = 2.0 ft 2 0.013 0.103 1.60 1.300 1.151.00 1.00 0.04 27.5 2,152.8 0.03 288.01.00 29.71.00 1.00+D+0.750L+0.750S+0.5250E+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00 1.00Length = 8.50 ft 1 0.296 0.103 1.60 1.300 1.151.00 1.00 0.94 637.5 2,152.8 0.38 288.01.00 29.71.00 1.00Length = 2.0 ft 2 0.013 0.103 1.60 1.300 1.151.00 1.00 0.04 27.5 2,152.8 0.03 288.01.00 29.71.00 1.00+0.60D+0.70E+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00 1.00Length = 8.50 ft 1 0.178 0.062 1.60 1.300 1.151.00 1.00 0.56 382.5 2,152.8 0.23 288.01.00 17.81.00 1.00Length = 2.0 ft 2 0.008 0.062 1.60 1.300 1.151.00 1.00 0.02 16.5 2,152.8 0.02 288.01.00 17.81.00 . Location in SpanLoad CombinationMax. "-" Defl Location in SpanLoad Combination Span Max. "+" Defl Overall Maximum Deflections W Only10.0000 0.000 -0.2311 4.179 W Only 2 0.1552 2.000 0.0000 4.179 . Load Combination Support 1 Support 2 Support 3 Vertical Reactions Support notation : Far left is #1 Values in KIPS Max Upward from all Load Conditions 0.301 0.549 Max Upward from Load Combinations 0.301 0.549 Max Upward from Load Cases 0.244 0.430 Max Downward from all Load Conditio -0.636 -0.726 Max Downward from Load Combinations -0.235 -0.177 Max Downward from Load Cases (Resis -0.636 -0.726 +D+H 0.244 0.430 +D+L+H 0.244 0.430 +D+Lr+H 0.301 0.549 Page 13 Wood Beam LIC# : KW-06014559, Build:20.23.05.01 ERUSU CONSULTANTS US (c) ENERCALC INC 1983-2023 DESCRIPTION:4x6 Rafters @ 30" o.c. (Wind Condition_Uplift) (Strength Check) Project File: 4x6 Joist @ 30 o.c_Copy.ec6 Project Title: Engineer: Project ID: Project Descr: Load Combination Support 1 Support 2 Support 3 Vertical Reactions Support notation : Far left is #1 Values in KIPS +D+S+H 0.244 0.430 +D+0.750Lr+0.750L+H 0.287 0.519 +D+0.750L+0.750S+H 0.244 0.430 +D+0.60W+H -0.137 -0.005 +D+0.750Lr+0.750L+0.450W+H 0.001 0.192 +D+0.750L+0.750S+0.450W+H -0.042 0.104 +0.60D+0.60W+0.60H -0.235 -0.177 +D+0.70E+0.60H 0.244 0.430 +D+0.750L+0.750S+0.5250E+H 0.244 0.430 +0.60D+0.70E+H 0.147 0.258 D Only 0.244 0.430 Lr Only 0.057 0.118 W Only -0.636 -0.726 H Only Page 14 Project : Project Number: By : Date : Seismic Ground Motion Values Richard Kain PE 30-05-2023 Page 15 Project : Project Number: By : Date : Seismic Design Force Seismic Loads - ASCE 7-16 Chapter 13 Seismic Force Component Amplification Factor, ap=(Refer ASCE 7-16, Table 13.6 -1) Overstrength Factor, Ωo =(Refer ASCE 7-16, Table 13.6 -1) Component Importance Factor, Ip= SDS = Average roof height of structure,h =ft z/h =z/h should not exceed 1 Frame Weight Wp = psf Seismic Design Force on Solar framing structure Max Fp =1.6 x SDS x Ip X Wp =psf Min Fp =0.3 x SDS x Ip X Wp =psf Seismic Design Load Fp =psf Vertical Seismic Design Load Fp =psf 1.00 Component Response Modification Factor, Rp= 1.50 15 1.11 2.95 0.74 Height in structure at point of attachment, z = ft (Refer ASCE 7-16, Table 13.6 -1) Seismic Coefficients for Mechanical and Electrical components =12 Other mechanical or electrical components. 1 3.07 psf 5.89 15 FP = ((0.4 x ap x SDS x Wp)/ (Rp / Ip)) x ((1+2(z/h)) =2.95 1.00 1.00 1.20 Richard Kain PE 30-05-2023 Page 16 Project : Project Number: By : Date : Richard Kain PE 30-05-2023 Check for Increase in overall seismic loads Array Area =ft2 Number of Arrays = Total Array Area =ft2 Array Load = psf Number of Existing Modules = Existing Area =ft2 Total Array Wt. = lb Total Roof Area =ft2 DL of Roof = psf Total Wt of Roof = lb Increase in Seismic Wt = < Conservatively the Wt. of the Walls tributary to the roof is not included. Seismic weight increase is less than 10% and no seismic retrofit or evaluation of existing lateral system is required per Section 503.4 of 2022 CEBC. 1436.1 1791.0 8.19 3 14 270.22 21.0 12 251.99 14660 9.8% 10% Page 17 Project : Project Number: By : Date : POWER WALL UNIT ATTACHEMENT CALCULATION Richard Kain PE 30-05-2023 Page 18 Project : Project Number: By : Date : 1. Loading Criteria Powerwall Unit Height = ft Powerwall Unit Width = ft Powerwall Unit Depth = ft Powerwall Unit C.G Height, HCG = ft Single Powerwall Weight, W = lbs Number of battery units, n = Max number of stacks per unit, N = Stack operating weight, WPW = lbs Total operating weight, WTPW = lbs Wpw = Unit type = Wall Mounted Number of anchor points at powerwall bracket, n1 = Bolt distance along width, BDX1 = ft Bolt distance along length, BDY1 = ft 2. Check (E) wall capacity to support additional loads imposed by the (N) powerwall units Shear due to dead load at each anchor point, PPW= lbs (E) Wall self weight, Wwall =psf Wall Studs = Wall Stud spacing, s =in Wall self tributary to each stud =plf Wall Height, hwall-1 =ft Richard Kain PE 30-05-2023 10.0 2x4 16 13.3 n x N x W 10 1.33 3.8 2.5 0.5 4.9 251.3 1 1 251.3 251.3 4 lbs/Anchor point 1.5 62.825 Dead T/C Loads from powerwall stack at each anchor point, T/CPW-DL=21 Page 19 Wood Column LIC# : KW-06014559, Build:20.23.05.01 ERUSU CONSULTANTS US (c) ENERCALC INC 1983-2023 DESCRIPTION:2x4post Project File: 2x4 studd.ec6 Project Title: Engineer: Project ID: Project Descr: .Code References Calculations per NDS 2018, IBC 2021, ASCE 7-16 Load Combinations Used : ASCE 7-16 General Information Wood Section Name 2x4Analysis Method : 10Overall Column Height ft Allowable Stress Design ( Used for non-slender calculations )Allow Stress Modification Factors End Fixities Top & Bottom Pinned Wood Species Wood Grade Fb +1,500.0 1,500.0 psi 1,000.0 1,000.0 150.0 1,000.0 33.0 psi Fv psi Fb -Ft psi Fc - Prll psi psi Density pcf Fc - Perp E : Modulus of Elasticity . . . 1,400.0 1,400.0 1,400.0 1,400.0 Cfu : Flat Use Factor 1.0 Cf or Cv for Tension 1.0 Use Cr : Repetitive ? Kf : Built-up columns 1.0 NDS 15.3.2 Exact Width 1.50 in Exact Depth 3.50 in Area 5.250 in^2 Ix 5.359 in^4 Iy 0.9844 in^4 Wood Grading/Manuf.Graded Lumber Wood Member Type Sawn Ct : Temperature Factor 1.0 Cf or Cv for Compression 1.0 1,400.0 Axial Cm : Wet Use Factor 1.0 Cf or Cv for Bending 1.0 x-x Bending y-y Bending ksi No Minimum Basic Y-Y (depth) axis : X-X (width) axis : Fully braced against buckling ABOUT X-X Axis Fully braced against buckling ABOUT Y-Y Axis Brace condition for deflection (buckling) along columns : .Service loads entered. Load Factors will be applied for calculations.Applied Loads Column self weight included : 12.031 lbs * Dead Load Factor AXIAL LOADS . . . Axial Load at 10.0 ft, D = 0.240, Lr = 0.120, W = 0.320 k BENDING LOADS . . . Lat. Point Load at 2.0 ft creating Mx-x, E = 0.0210 k Lat. Point Load at 3.50 ft creating Mx-x, E = 0.0210 k .DESIGN SUMMARY PASS PASS Max. Axial+Bending Stress Ratio =0.08659 Location of max.above base 3.490 ft Applied Axial 0.2520 k Applied Mx 0.05249 k-ft Load Combination +D+0.70E+0.60H Load Combination +D+0.70E+0.60H Bending & Shear Check Results Maximum Shear Stress Ratio = Applied Design Shear 9.135 psi 240.0Allowable Shear psi 0.02538 : 1 Bending Compression Tension Location of max.above base 1.946 ft : 1 At maximum location values are . . . Applied My 0.0 k-ft Maximum SERVICE Lateral Load Reactions . . Top along Y-Y 0.01155 k Bottom along Y-Y 0.03045 k Top along X-X 0.0 k Bottom along X-X 0.0 kGoverning NDS Forumla Comp + Mxx, NDS Eq. 3.9-3 Maximum SERVICE Load Lateral Deflections . . . Along Y-Y 0.1493 in at 4.564 ft above base for load combination :E Only Along X-X 0.0 in at 0.0 ft above base Fc : Allowable 1,600.0 psi Other Factors used to calculate allowable stresses . . . for load combination :n/a . Maximum Axial + Bending Stress Ratios Maximum Shear RatiosCDCLoad Combination Stress Ratio Location Stress Ratio Status LocationPStatus Load Combination Results +D+H 0.900 PASS PASS0.0 0.0 10.0 ft1.000 ft0.05334 +D+L+H 1.000 PASS PASS0.0 0.0 10.0 ft1.000 ft0.04801 +D+Lr+H 1.250 PASS PASS0.0 0.0 10.0 ft1.000 ft0.05669 +D+S+H 1.150 PASS PASS0.0 0.0 10.0 ft1.000 ft0.04174 +D+0.750Lr+0.750L+H 1.250 PASS PASS0.0 0.0 10.0 ft1.000 ft0.05212 +D+0.750L+0.750S+H 1.150 PASS PASS0.0 0.0 10.0 ft1.000 ft0.04174 +D+0.60W+H 1.600 PASS PASS0.0 0.0 10.0 ft1.000 ft0.05286 +D+0.750Lr+0.750L+0.450W+H 1.600 PASS PASS0.0 0.0 10.0 ft1.000 ft0.05786 Page 20 Wood Column LIC# : KW-06014559, Build:20.23.05.01 ERUSU CONSULTANTS US (c) ENERCALC INC 1983-2023 DESCRIPTION:2x4post Project File: 2x4 studd.ec6 Project Title: Engineer: Project ID: Project Descr: Maximum Axial + Bending Stress Ratios Maximum Shear RatiosCDCLoad Combination Stress Ratio Location Stress Ratio Status LocationPStatus Load Combination Results +D+0.750L+0.750S+0.450W+H 1.600 PASS PASS0.0 0.0 10.0 ft1.000 ft0.04715 +0.60D+0.60W+0.60H 1.600 PASS PASS0.0 0.0 10.0 ft1.000 ft0.04086 +D+0.70E+0.60H 1.600 PASS PASS3.490 0.02538 1.946 ft1.000 ft0.08659 +D+0.750L+0.750S+0.5250E+H 1.600 PASS PASS3.490 0.01903 1.946 ft1.000 ft0.06517 +0.60D+0.70E+H 1.600 PASS PASS3.490 0.02538 1.946 ft1.000 ft0.08602 . k k-ft Note: Only non-zero reactions are listed. Load Combination X-X Axis Reaction Y-Y Axis Reaction Axial Reaction @ Base @ Top @ Base@ Base @ Top Maximum Reactions @ Base @ Base@ Top @ Top My - End Moments Mx - End Moments +D+H 0.252 +D+L+H 0.252 +D+Lr+H 0.372 +D+S+H 0.252 +D+0.750Lr+0.750L+H 0.342 +D+0.750L+0.750S+H 0.252 +D+0.60W+H 0.444 +D+0.750Lr+0.750L+0.450W+H 0.486 +D+0.750L+0.750S+0.450W+H 0.396 +0.60D+0.60W+0.60H 0.343 +D+0.70E+0.60H 0.008 0.2520.021 +D+0.750L+0.750S+0.5250E+H 0.006 0.2520.016 +0.60D+0.70E+H 0.008 0.1510.021 D Only 0.252 Lr Only 0.120 L Only S Only W Only 0.320 E Only 0.0120.030 H Only .Maximum Deflections for Load Combinations Max. X-X Deflection Max. Y-Y Deflection DistanceLoad Combination Distance +D+H 0.0000 0.000 0.000 ftftinin0.000 +D+L+H 0.0000 0.000 0.000 ftftinin0.000 +D+Lr+H 0.0000 0.000 0.000 ftftinin0.000 +D+S+H 0.0000 0.000 0.000 ftftinin0.000 +D+0.750Lr+0.750L+H 0.0000 0.000 0.000 ftftinin0.000 +D+0.750L+0.750S+H 0.0000 0.000 0.000 ftftinin0.000 +D+0.60W+H 0.0000 0.000 0.000 ftftinin0.000 +D+0.750Lr+0.750L+0.450W+H 0.0000 0.000 0.000 ftftinin0.000 +D+0.750L+0.750S+0.450W+H 0.0000 0.000 0.000 ftftinin0.000 +0.60D+0.60W+0.60H 0.0000 0.000 0.000 ftftinin0.000 +D+0.70E+0.60H 0.0000 0.105 4.564 ftftinin0.000 +D+0.750L+0.750S+0.5250E+H 0.0000 0.078 4.564 ftftinin0.000 +0.60D+0.70E+H 0.0000 0.105 4.564 ftftinin0.000 D Only 0.0000 0.000 0.000 ftftinin0.000 Lr Only 0.0000 0.000 0.000 ftftinin0.000 L Only 0.0000 0.000 0.000 ftftinin0.000 S Only 0.0000 0.000 0.000 ftftinin0.000 W Only 0.0000 0.000 0.000 ftftinin0.000 E Only 0.0000 0.149 4.564 ftftinin0.000 H Only 0.0000 0.000 0.000 ftftinin0.000 . Page 21 Wood Column LIC# : KW-06014559, Build:20.23.05.01 ERUSU CONSULTANTS US (c) ENERCALC INC 1983-2023 DESCRIPTION:2x4post Project File: 2x4 studd.ec6 Project Title: Engineer: Project ID: Project Descr: Sketches Page 22 Project : Project Number: By : Date : GLOBAL DESIGN CRITERIA 1. Powerwall unit and Bracket Design Specifications : Unit Height = in Unit Width = in Unit Depth = in Vertical distance between fasteners, Yf = in Unit weight, W = lbs Eccentricity from powerwall, e = in 2. Applicable site loads and coefficients Max Wind Pressure Wind load = mph Risk Category = Exposure Category = Velocity Pressure Coefficient, KZ = Topographic Factor, KZt = Wind Directionality Factor, Kd = Ke = External Pressure Coefficient, GCp = (Ignored for fastener calc) Max Seismic Load SRA at Short Period, SS =ASCE 7-16 Section 11.4.2 Site Class =ASCE 7-16 Section 11.4.3 Short Period Site Coefficient, Fa =ASCE 7-16 Table 11.4-1 ASCE 7-16 Table 11.4-2 Short Period Spectral Acceleration, SDS =ASCE 7-16 Table 11.4-3 Seismic Design Category = ASCE 7-16 Section 11.6 Long Period Site Coefficient, FV = Internal Pressure Coefficient, GCpi = Richard Kain PE 30-05-2023 45.3 29.6 5.75 18 251.3 6.8 97 1 0.85 1 0.85 II B NA 1.20 *null 1.4 0.0 1.5 D 1.2 Page 23 Project : Project Number: By : Date : GRAVITY LOAD CALCULATIONS Snow Load 0.7 * Ce * Ct * Is * Pg,max (Refer ASCE 7-16, Section 7.3-1) = psf Wind Pressure Velocity Pressure, qz = 00256 * Kz * Kzt * Kd* V2 (Refer ASCE 7-16, Section 26.10-1) = psf Design Wind Pressure, p = qz * [GCp + Gcpi](Refer ASCE 7-16, Section 30.3-1 ) =psf Seismic Forces 0.4 * ap * SDS * Wp * [1 + (2 * z / h)] Short Period Spectral Acceleration, SDS = Component Amplification Factor, ap =(Batteries - Refer ASCE 7-16, Table 13.6-1) (need not exceed 1.0) (Hazardous material - Refer ASCE 7-16, Table 13.1.3) * Wp 0.3 * SDS * Ip * Wp (Refer ASCE 7-16, Section 13.3-3 ) * Wp 1.6 * SDS * Ip * Wp (Refer ASCE 7-16, Section 13.3-2 ) = * Wp lbs * Wp =lbs = * Wp = lbs 271.4 251.3 Vertical Seismic Force, Fp,vert = 60.3 1 1 2.5 0.24 0.54 1.08 1.08 Weight of 1 Powerwall + Bracket, Wp = Fp,final = 0.2 * SDS * Wp Richard Kain PE 30-05-2023 0 (Rp / Ip) 1.2 1.92 Pf,max = Fp,max = Fp,min = Horizontal Seismic Force, Fp = (z/h)wall = Component Importance Factor, Ip = Response Modification Factor, Rp = Fp,wall = 24.4 17.4 0.9 Page 24 Project : Project Number: By : Date : LOAD APPLICATIONS Dead Load Shear Load Unit Load = lbs (distributed over # fasteners) Withdrawal load Withdrawal Force = Ecc moment / Yf Ecc Moment = in-lbs Withdrawal Force = lbs (distributed @ Top Bracket) Snow Load Shear Load Shear Force, Sparallel = =lbs (distributed over # fasteners) Withdrawal load Withdrawal Force = Ecc Moment = in-lbs Withdrawal Force = lbs (distributed @ Top Bracket) Wind Load Shear Load Wind Load, Wparallel = p * Side Surface Area of Unit =lbs (distributed over # fasteners) Withdrawal load (Suction) Withdrawal Load on Fastener = from Wind Load, Wperp = p * Front Surface Area of Unit = lbs (distributed over # fasteners) Ecc moment / Yf 0 0.0 44.1 226.9 Richard Kain PE 30-05-2023 Pf * Top Surface Area of Unit 251.3 1708.8 94.9 0 Page 25 Project : Project Number: By : Date : Richard Kain PE 30-05-2023 Seismic Load Shear Load lbs lbs (Refer ASCE 7-16, Section 12.4-4) Withdrawal load (accounts for horizontal components of Fp,vert and Fp) lbs lbs (Refer ASCE 7-16, Section 12.4-3) + Note: All withdrawal loads account for eccentricity, e, of the unit/bracket/wall system Greatest Withdrawal Load from Load Combination [D+.75*L+.75*(.6W)+.75*S] =lbs ((1+.14Sds)D+0.7Ev = lbs ((1+0.105Sds)D+0.525Ex+0.75S) = lbs Max Withdrawal load = Greatest Shear Load from [D+.75*L+.75*(.6W)+.75*S] Load Combination [D+.75*L+.75*(.6W)+.75*S] =lbs ((1+.14Sds)D+0.7Ev = lbs ((1+0.105Sds)D+0.525Ex+0.75S) = lbs Max Shear load = 60.3 # Top Fasteners Horizontal 271.4 # Total Fasteners Vertical Horizontal Seismic Force, Fp =271.4 Horizontal Effect, Eh = 271.4 Vertical Seismic Force, Fp,vert =60.3 Vertical Effect, Ev = 60.3 483.5 425.5 197.0 483.5 197.0 153.1 138.6 271.1 Seismic Load, E = Page 26 Project : Project Number: By : Date : ATTACHMENTS USING WOOD STUDS Wood Stud (With & Without Blocking) Lag Screw/Bolt Size = Number of Screws in Tension = Thread Length, p = in Eccentricity, e = in Withdrawal per Fastener, T = lbs SPF Lumber Specific Gravity, G = Withdrawal Design, W = lbs/in [NDS Table 12.2A] Load Duration Factor, CD = Capacity of Fasteners'' = lbs > O.K. lbs Shear Design, Z = lbs/in [NDS Table 12J (SPF)] Load Duration Factor, CD = Z' = lbs > O.K. Combined Shear and Withdrawal Analysed per NDS 2012 Sec. 11.4 and Eq. 11.4-2 α = deg R= lbs Z' α = lbs DCR = =<O.K. 130.53 415 494 494 Shear Load per Fastener, V = 121 110 440.0 120.88 1.6 440.0 R/Z' α Richard Kain PE 30-05-2023 0.31 22.2 1.05 2.5 6.8 173.0 1.6 49.26 4 49.26 0.42 1/4 Page 27