HomeMy WebLinkAboutStructural CalculationsProject :
Project Number:
By :
Date :
UNIRAC
1411 Broadway Blvd, NE
Albuquerque, NM 87102
RE: Richard Kain
To Whom it May Concern,
CODE REFERENCES:
BUILDING CODE: 2022 CALIFORNIA BUILDING CODE
2021 INTERNATIONAL BUILDING CODE
ASCE 7-16
SCOPE OF WORK:
DESIGN PARAMETERS
RISK/OCCUPANCY CATEGORY :
ROOF DEAD LOAD :psf
ROOF LIVE LOAD :psf
DESIGN WIND SPEED :mph
WIND EXPOSURE :
GROUND SNOW LOAD :psf
SEISMIC DESIGN CATEGORY :
EXISTING ROOF STRUCTURE
ROOF :4x6 Rafters @ 30" O.C.
ROOF MATERIAL :Comp Shingle
EXISTING WALL STUDS
WALL STUDS :2x4 @ 16" O.C.
WALL STUD MATERIAL :Wood Studs
Per your request, we have reviewed the existing structure at the above referenced site. The purpose of our
review was to determine the adequacy of the existing structure to support the proposed installation of solar
panels on the roof per layout plan.
Roof structural framing plan has been reviewed for additional loading due to installation of the roof mounted
solar PV addition. The structural review that follows, including plans and calculations, only apply to the section
of the roof that is directly supporting the solar PV system and its supporting elements.
Richard Kain
PE
30-05-2023
Tuesday, May 30, 2023
45585 Abronia Trail, Palm Desert, CA 92260, USA
0
*null
II
97
B
8
20
Page 1
CONNECTION TO STRUCTURE
OBSERVED CONDITIONS:
CONCLUSIONS:
LIMITATIONS:
Praneet R Erusu, P.E.
Principal Engineer
Erusu Consultants US Inc.
Installation of the solar panels must be performed in accordance with manufacturer recommendations. All
work performed must be in accordance with accepted industry-wide methods and applicable safety standards.
Existing Roof and structural members are assumed to be in good and serviceable condition. The contractor
must notify Erusu Consultants US Inc. should any damage, deterioration or discrepancies between the as-built
condition of the structure and the condition described in this letter be found. The use of solar panel support
span tables provided by others are allowed only where the building type, site conditions, site-specific design
parameters, and solar panel configuration match the description of the span tables. The design of the solar panel
racking (mounts, rails, etc.) and electrical engineering is the responsibility of others. Waterproofing around the
roof penetrations is the responsibility of others. Erusu Consultants US Inc. assumes no responsibility for
improper installation of the solar array.
MOUNTING CONNECTION :
Based upon our review, we conclude that the existing structure is adequate to support the proposed solar panel
installation. In the area of the solar array, other live loads will not be present or will be greatly reduced (2022
CBC, Section 1607.14.4). The gravity loads and the stresses of the structural elements, in the area of the solar
array are either decreased or increased by no more than 5%. Therefore, the requirements of Section 503.3 of the
2022 CEBC are met and the structure is permitted to remain unaltered.
The solar array will be flush-mounted (no more than 6" above the roof surface) and parallel to the roof surface.
Thus, we conclude that any additional wind loading on the structure related to the addition of the proposed
solar array is negligible. The attached calculations verify the capacity of the connections of the solar array to the
existing roof against wind (uplift), the governing load case. Regarding seismic loads, we conclude that any
additional forces will be small. Conservatively neglecting the weight of existing wall materials, the installation of
the solar panels represents an increase in the total weight (and resulting seismic load) of 9.8%. Because the
increase in lateral forces is less than 10%, this addition meets the requirements of the exception in Section 503.4
of the 2022 CEBC. Thus the existing lateral force resisting system is permitted to remain unaltered.
(1) 5/16" SS LAG BOLT w/ MIN. 2.5" EMBEDMENT INTO (E) 2x FRAMING
MEMBER @ MAX. 60" o.c. ALONG RAILS
(2) RAILS PER ROW OF PANELS, EVENLY SPACED. PANEL LENGTH
PERPENDICULAR TO RAIL NOT TO EXCEED 67.8".
(4) 1/4" LAG BOLTS w/ MIN. 2.5" EMBEDMENT (2 TOP & 2 BOTTOM) INTO (E)
STUDS, USING 2 STUDS MINIMUM FOR TESLA POWERWALL SINGLE STACK.
The observed roof framing is described below. If field conditions differ, the contractor shall notify the engineer
prior to starting construction. The roof framing is supported by 4x6 Rafters @ 30" O.C are spanning between
load bearing walls. The maximum allowed clear span of rafter is 8.5ft, to be verified in field by the contractor.
30 May 2023
EXP : 30 Sep 2023
Page 2
Project :
Project Number:
By :
Date :
Address :45585 Abronia Trail, Palm Desert, CA 92260, USA
Site Plan:
Richard Kain
PE
30-05-2023
Page 3
Project :
Project Number:
By :
Date :
Roof Dead Load
Roof Slope = :
Angle =
Roof Live Load
Roof Live Load, Lo = psf (Refer ASCE 7-16, Table 4.3-1)
Roof Live Load with PV Array = psf 2022 CBC, Section 1607.14.4
(Ceiling load and MEP is assumed to be not supported by rafters)
DL = 8.19
20
0
Framing 1.15 1.02 1.18
PV Array 3 1.02 3.07
Vaulted Ceiling 0 1.02 0.00
MEP & Misc. 0.85 1.02 0.87
Comp Shingle 4 1.02 4.09
1/2" Plywood Deck 2 1.02 2.05
2.6 12
Plan Projected Material
Weight (psf)
Richard Kain
PE
30-05-2023
12
Material
Material Weight
(psf)
Increase due to
Roof Slope
Page 4
Project :
Project Number:
By :
Date :
Richard Kain
PE
30-05-2023
Summary of Gravity Loads
Dead Load, D = psf
Roof Live Load, Lr = psf
Gravity Load Comparison
(D + Lr)/Cd = psf
(Cd = 0.9 for D, 1.15 for S, 1.25 for Lr)
Max Loading = psf
Proposed to Current Loading Ratio =
Gravity Loading with PV Array is not stressing the current framing system by more that 5% of the original
configuration. Per Section 503.3 of 2022 California Existing Building Code the structure is allowed to remain
unaltered for gravity loading.
25.10 12.51
50%< 105%O.K.
Existing With PV Array
25.10 12.51
8.19 11.26
20.00 0.00
Existing With PV Array
Page 5
Project :
Project Number:
By :
Date :
Wind Load Calculation
Wind Loads - ASCE 7-16 Chapter 26 & 29
Risk Category =
V = mph
Exposure =
Average height of building, z = ft - avg (Approximate)
ft (Refer ASCE 7-16, Table 26.10-1)
α =Zg =ft (Refer ASCE 7-16, Table 26.11-1)
Kh & Kz =2.01(z/Zg)^(2/α) =
Kzt =(Refer ASCE 7-16, Equation 26.8-1)
Kd =(Refer ASCE 7-16, Table 26.6.1)
Ke =(Refer ASCE 7-16, Table 26.9-1)
qh ='.00256 KzKztKdKeV² =psf (Refer ASCE 7-16, Section 26.10-1)
Building Classification =
Solar Panel
Components and Cladding p C&C = qh(GCp)(ϒe)(ϒa)ASCE 7-16 Chapter 29.4.4
Module Length =in
Module Width =in
Area of Module =ft2
Roof Pitch =:
Slope =degrees
Gable Roof =
ϒe=
ϒa= (Refer ASCE 7-16, Figure 29.4-8)
12
12
21.0
67.80
7° < θ ≤ 20°
1.5
11.77
2.6
44.6
97
B
15
0.57
Enclosed
0.8
1200
zmin = 30
7
1
1
0.85
II
Richard Kain
PE
30-05-2023
Page 6
Project :
Project Number:
By :
Date :
Richard Kain
PE
30-05-2023
Zone 1 Uplift
External Wind pressure coefficient GCp =
External Wind pressure, qGCp = psf
Zone 2 Uplift
External Wind pressure coefficient GCp =
External Wind pressure, qGCp = psf
All Zone Downward
External Wind pressure coefficient GCp =
External Wind pressure, qGCp = psf
Maximum Uplift Wind Pressure, p = psf
Minimum Downward Wind Pressure ,p =psf
Lag Screw / Bolt Connection Check (ASD) for Portrait
Tributary Width =in (Max Spacing of fasteners along Rails)
Tributary Length =in (Half Panel Length)
Tributary Area =ft2
Lag Screw/Bolt Size =
Cd =(Refer NDS Table 2.3.2)
Embedment = in
Grade of Wood = #2 ( or better)
G =
Capacity = lb/in (Refer NDS Table 12.2A)
Number of Screws in Tension =
Prying Coefficient =
Capacity of Fasteners = lb
Demand
Zone 1
Zone 2 0.41
Pressure ASD (0.6W)(psf)
-16.9
-22.0 14.1 311.1 760
DCR
14.1 239.3 760 0.31
Capacity (lb)Tributary Area (ft2) Uplift (lb)Zone
0.5
266
1
1.4
760
60
0.5
7.1
(Measured from top of the framing member to tapered tip of lag screw,
embedment in sheathing and tapered tip of screw is not included)
DF
-36.71
-2
-28.24
-36.71
16.0
33.90
14.1
5/16
1.6
2.5
-2.6
Page 7
Project :
Project Number:
By :
Date :
Richard Kain
PE
30-05-2023
Lag Screw / Bolt Connection Check (ASD) for Landscape
Tributary Width =in (Max Spacing of fasteners along Rails)
Tributary Length =in (Half Panel Length)
Tributary Area =ft2
Lag Screw/Bolt Size =
Cd =(Refer NDS Table 2.3.2)
Embedment = in
Grade of Wood = #2 ( or better)
G =
Capacity = lb/in (Refer NDS Table 12.2A)
Number of Screws in Tension =
Prying Coefficient =
Capacity of Fasteners = lb
Demand
60
22.3
9.3
5/16
1.6
2.5 (Measured from top of the framing member to tapered tip of lag screw,
embedment in sheathing and tapered tip of screw is not included)
DF
0.5
266
1
1.4
760
Zone Pressure ASD (0.6W)(psf) Tributary Area (ft
2) Uplift (lb) Capacity (lb) DCR
Zone 1 -16.9 9.3 157.4 760 0.21
0.27Zone 2 -22.0 9.3 204.7 760
Page 8
Wood Beam
LIC# : KW-06014559, Build:20.23.05.01 ERUSU CONSULTANTS US (c) ENERCALC INC 1983-2023
DESCRIPTION:4x6 Rafters @ 30" o.c. (Wind Condition_Downward) (Strength Check)
Project File: 4x6 Joist @ 30 o.c_Copy.ec6
Project Title:
Engineer:
Project ID:
Project Descr:
CODE REFERENCES
Calculations per NDS 2018, IBC 2021, ASCE 7-16
Load Combination Set : ASCE 7-16
Material Properties
Beam Bracing :Beam is Fully Braced against lateral-torsional buckling Repetitive Member Stress Increase
Allowable Stress Design
Douglas Fir-Larch
No.2
900.0
900.0
1,350.0
625.0
1,600.0
580.0
180.0
575.0 31.210
Analysis Method :
Eminbend - xx ksi
Wood Species :
Wood Grade :
Fb +
psi
psi
Fv psi
Fb -
Ft psi
Fc - Prll psi
psiFc - Perp
E : Modulus of Elasticity
Ebend- xx ksi
Density pcf
Load Combination :ASCE 7-16
.Applied Loads Service loads entered. Load Factors will be applied for calculations.
Beam self weight NOT internally calculated and added
Load for Span Number 1
Uniform Load : D = 0.00810 ksf, Tributary Width = 2.50 ft, (Existing Roof Dead Load)
Point Load : D = 0.0420, W = 0.2260 k @ 2.50 ft, (Solar Panel Load)
Point Load : D = 0.420, W = 0.2260 k @ 5.80 ft, (Solar Panel Load)
Uniform Load : Lr = 0.020, W = 0.0160 ksf, Extent = 0.0 -->> 1.50 ft, Tributary Width = 2.50 ft, (Existing Wind & Roof Live Load)
Load for Span Number 2
Uniform Load : D = 0.00810, Lr = 0.020, W = 0.0160 ksf, Tributary Width = 2.50 ft, (Existing Roof Load)
.DESIGN SUMMARY Design OK
Maximum Bending Stress Ratio 0.526: 1
Load Combination +D+H
Span # where maximum occurs Span # 1
Location of maximum on span 5.793ft
29.70 psi=
=
1,210.95 psi
4x6Section used for this span
Span # where maximum occurs
Location of maximum on span
Span # 1=
Load Combination +D+H
=
=
=
162.00 psi==
Section used for this span 4x6
Maximum Shear Stress Ratio 0.183 : 1
8.073 ft=
=
637.54 psi
Maximum Deflection
708 >=180
519
Ratio =328 >=120
Max Downward Transient Deflection 0.101 in 1013Ratio =>=180
Max Upward Transient Deflection -0.068 in Ratio =
Max Downward Total Deflection 0.196 in Ratio =>=120
Max Upward Total Deflection -0.146 in
fb: Actual
F'b
fv: Actual
F'v
Span: 2 : Lr Only
Span: 2 : W Only
Span: 1 : +D+0.60W+H
Span: 2 : +D+0.60W+H
.Maximum Forces & Stresses for Load Combinations
Span #
Moment ValuesLoad Combination
C iCLx CCCMCF rt
Shear ValuesMax Stress Ratios
M CDV fbM fvF'b V F'vSegment Length Cfu
+D+H 0.0 0.00 0.00.0
1.00Length = 8.50 ft 1 0.526 0.183 0.90 1.300 1.151.00 1.00 0.94 637.5 1,211.0 0.38 162.01.00 29.71.00
1.00Length = 2.0 ft 2 0.023 0.183 0.90 1.300 1.151.00 1.00 0.04 27.5 1,211.0 0.03 162.01.00 29.71.00
1.00+D+L+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00
1.00Length = 8.50 ft 1 0.474 0.165 1.00 1.300 1.151.00 1.00 0.94 637.5 1,345.5 0.38 180.01.00 29.71.00
Page 9
Wood Beam
LIC# : KW-06014559, Build:20.23.05.01 ERUSU CONSULTANTS US (c) ENERCALC INC 1983-2023
DESCRIPTION:4x6 Rafters @ 30" o.c. (Wind Condition_Downward) (Strength Check)
Project File: 4x6 Joist @ 30 o.c_Copy.ec6
Project Title:
Engineer:
Project ID:
Project Descr:
Maximum Forces & Stresses for Load Combinations
Span #
Moment ValuesLoad Combination
C iCLx CCCMCF rt
Shear ValuesMax Stress Ratios
M CDV fbM fvF'b V F'vSegment Length Cfu
1.00Length = 2.0 ft 2 0.020 0.165 1.00 1.300 1.151.00 1.00 0.04 27.5 1,345.5 0.03 180.01.00 29.71.00
1.00+D+Lr+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00
1.00Length = 8.50 ft 1 0.359 0.138 1.25 1.300 1.151.00 1.00 0.89 603.4 1,681.9 0.40 225.01.00 31.11.00
1.00Length = 2.0 ft 2 0.057 0.138 1.25 1.300 1.151.00 1.00 0.14 95.5 1,681.9 0.11 225.01.00 31.11.00
1.00+D+S+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00
1.00Length = 8.50 ft 1 0.412 0.143 1.15 1.300 1.151.00 1.00 0.94 637.5 1,547.3 0.38 207.01.00 29.71.00
1.00Length = 2.0 ft 2 0.018 0.143 1.15 1.300 1.151.00 1.00 0.04 27.5 1,547.3 0.03 207.01.00 29.71.00
1.00+D+0.750Lr+0.750L+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00
1.00Length = 8.50 ft 1 0.364 0.137 1.25 1.300 1.151.00 1.00 0.90 611.9 1,681.9 0.39 225.01.00 30.81.00
1.00Length = 2.0 ft 2 0.047 0.137 1.25 1.300 1.151.00 1.00 0.12 78.5 1,681.9 0.09 225.01.00 30.81.00
1.00+D+0.750L+0.750S+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00
1.00Length = 8.50 ft 1 0.412 0.143 1.15 1.300 1.151.00 1.00 0.94 637.5 1,547.3 0.38 207.01.00 29.71.00
1.00Length = 2.0 ft 2 0.018 0.143 1.15 1.300 1.151.00 1.00 0.04 27.5 1,547.3 0.03 207.01.00 29.71.00
1.00+D+0.60W+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00
1.00Length = 8.50 ft 1 0.401 0.141 1.60 1.300 1.151.00 1.00 1.27 864.2 2,152.8 0.52 288.01.00 40.71.00
1.00Length = 2.0 ft 2 0.028 0.141 1.60 1.300 1.151.00 1.00 0.09 60.2 2,152.8 0.07 288.01.00 40.71.00
1.00+D+0.750Lr+0.750L+0.450W+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00
1.00Length = 8.50 ft 1 0.363 0.136 1.60 1.300 1.151.00 1.00 1.15 781.9 2,152.8 0.50 288.01.00 39.01.00
1.00Length = 2.0 ft 2 0.048 0.136 1.60 1.300 1.151.00 1.00 0.15 103.0 2,152.8 0.12 288.01.00 39.01.00
1.00+D+0.750L+0.750S+0.450W+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00
1.00Length = 8.50 ft 1 0.375 0.132 1.60 1.300 1.151.00 1.00 1.19 807.6 2,152.8 0.49 288.01.00 38.01.00
1.00Length = 2.0 ft 2 0.024 0.132 1.60 1.300 1.151.00 1.00 0.08 52.0 2,152.8 0.06 288.01.00 38.01.00
1.00+0.60D+0.60W+0.60H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00
1.00Length = 8.50 ft 1 0.283 0.100 1.60 1.300 1.151.00 1.00 0.90 609.2 2,152.8 0.37 288.01.00 28.81.00
1.00Length = 2.0 ft 2 0.023 0.100 1.60 1.300 1.151.00 1.00 0.07 49.2 2,152.8 0.06 288.01.00 28.81.00
1.00+D+0.70E+0.60H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00
1.00Length = 8.50 ft 1 0.296 0.103 1.60 1.300 1.151.00 1.00 0.94 637.5 2,152.8 0.38 288.01.00 29.71.00
1.00Length = 2.0 ft 2 0.013 0.103 1.60 1.300 1.151.00 1.00 0.04 27.5 2,152.8 0.03 288.01.00 29.71.00
1.00+D+0.750L+0.750S+0.5250E+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00
1.00Length = 8.50 ft 1 0.296 0.103 1.60 1.300 1.151.00 1.00 0.94 637.5 2,152.8 0.38 288.01.00 29.71.00
1.00Length = 2.0 ft 2 0.013 0.103 1.60 1.300 1.151.00 1.00 0.04 27.5 2,152.8 0.03 288.01.00 29.71.00
1.00+0.60D+0.70E+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00
1.00Length = 8.50 ft 1 0.178 0.062 1.60 1.300 1.151.00 1.00 0.56 382.5 2,152.8 0.23 288.01.00 17.81.00
1.00Length = 2.0 ft 2 0.008 0.062 1.60 1.300 1.151.00 1.00 0.02 16.5 2,152.8 0.02 288.01.00 17.81.00
.
Location in SpanLoad CombinationMax. "-" Defl Location in SpanLoad Combination Span Max. "+" Defl
Overall Maximum Deflections
+D+0.60W+H 1 0.1963 4.416 0.0000 0.000
+D+0.60W+H20.0000 4.416 -0.1458 2.000
.
Load Combination Support 1 Support 2 Support 3
Vertical Reactions Support notation : Far left is #1 Values in KIPS
Max Upward from all Load Conditions 0.411 0.661
Max Upward from Load Combinations 0.411 0.661
Max Upward from Load Cases 0.277 0.430
+D+H 0.244 0.430
+D+L+H 0.244 0.430
+D+Lr+H 0.301 0.549
+D+S+H 0.244 0.430
+D+0.750Lr+0.750L+H 0.287 0.519
+D+0.750L+0.750S+H 0.244 0.430
Page 10
Wood Beam
LIC# : KW-06014559, Build:20.23.05.01 ERUSU CONSULTANTS US (c) ENERCALC INC 1983-2023
DESCRIPTION:4x6 Rafters @ 30" o.c. (Wind Condition_Downward) (Strength Check)
Project File: 4x6 Joist @ 30 o.c_Copy.ec6
Project Title:
Engineer:
Project ID:
Project Descr:
Load Combination Support 1 Support 2 Support 3
Vertical Reactions Support notation : Far left is #1 Values in KIPS
+D+0.60W+H 0.410 0.620
+D+0.750Lr+0.750L+0.450W+H 0.411 0.661
+D+0.750L+0.750S+0.450W+H 0.369 0.572
+0.60D+0.60W+0.60H 0.313 0.447
+D+0.70E+0.60H 0.244 0.430
+D+0.750L+0.750S+0.5250E+H 0.244 0.430
+0.60D+0.70E+H 0.147 0.258
D Only 0.244 0.430
Lr Only 0.057 0.118
W Only 0.277 0.315
H Only
Page 11
Wood Beam
LIC# : KW-06014559, Build:20.23.05.01 ERUSU CONSULTANTS US (c) ENERCALC INC 1983-2023
DESCRIPTION:4x6 Rafters @ 30" o.c. (Wind Condition_Uplift) (Strength Check)
Project File: 4x6 Joist @ 30 o.c_Copy.ec6
Project Title:
Engineer:
Project ID:
Project Descr:
CODE REFERENCES
Calculations per NDS 2018, IBC 2021, ASCE 7-16
Load Combination Set : ASCE 7-16
Material Properties
Beam Bracing :Beam is Fully Braced against lateral-torsional buckling Repetitive Member Stress Increase
Allowable Stress Design
Douglas Fir-Larch
No.2
900.0
900.0
1,350.0
625.0
1,600.0
580.0
180.0
575.0 31.210
Analysis Method :
Eminbend - xx ksi
Wood Species :
Wood Grade :
Fb +
psi
psi
Fv psi
Fb -
Ft psi
Fc - Prll psi
psiFc - Perp
E : Modulus of Elasticity
Ebend- xx ksi
Density pcf
Load Combination :ASCE 7-16
.Applied Loads Service loads entered. Load Factors will be applied for calculations.
Beam self weight NOT internally calculated and added
Load for Span Number 1
Uniform Load : D = 0.00810 ksf, Tributary Width = 2.50 ft, (Existing Roof Dead Load)
Point Load : D = 0.0420, W = -0.5190 k @ 2.50 ft, (Solar Panel Load)
Point Load : D = 0.420, W = -0.5190 k @ 5.80 ft, (Solar Panel Load)
Uniform Load : Lr = 0.020, W = -0.0370 ksf, Extent = 0.0 -->> 1.50 ft, Tributary Width = 2.50 ft, (Existing Wind & Roof Live Load)
Load for Span Number 2
Uniform Load : D = 0.00810, Lr = 0.020, W = -0.0370 ksf, Tributary Width = 2.50 ft, (Existing Roof Load)
.DESIGN SUMMARY Design OK
Maximum Bending Stress Ratio 0.526: 1
Load Combination +D+H
Span # where maximum occurs Span # 1
Location of maximum on span 5.793ft
29.70 psi=
=
1,210.95 psi
4x6Section used for this span
Span # where maximum occurs
Location of maximum on span
Span # 1=
Load Combination +D+H
=
=
=
162.00 psi==
Section used for this span 4x6
Maximum Shear Stress Ratio 0.183 : 1
8.073 ft=
=
637.54 psi
Maximum Deflection
441 >=180
748
Ratio =456 >=120
Max Downward Transient Deflection 0.155 in 308Ratio =>=180
Max Upward Transient Deflection -0.231 in Ratio =
Max Downward Total Deflection 0.136 in Ratio =>=120
Max Upward Total Deflection -0.105 in
fb: Actual
F'b
fv: Actual
F'v
Span: 2 : W Only
Span: 1 : W Only
Span: 2 : +0.60D+0.60W+0.60H
Span: 2 : +D+H
.Maximum Forces & Stresses for Load Combinations
Span #
Moment ValuesLoad Combination
C iCLx CCCMCF rt
Shear ValuesMax Stress Ratios
M CDV fbM fvF'b V F'vSegment Length Cfu
+D+H 0.0 0.00 0.00.0
1.00Length = 8.50 ft 1 0.526 0.183 0.90 1.300 1.151.00 1.00 0.94 637.5 1,211.0 0.38 162.01.00 29.71.00
1.00Length = 2.0 ft 2 0.023 0.183 0.90 1.300 1.151.00 1.00 0.04 27.5 1,211.0 0.03 162.01.00 29.71.00
1.00+D+L+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00
1.00Length = 8.50 ft 1 0.474 0.165 1.00 1.300 1.151.00 1.00 0.94 637.5 1,345.5 0.38 180.01.00 29.71.00
Page 12
Wood Beam
LIC# : KW-06014559, Build:20.23.05.01 ERUSU CONSULTANTS US (c) ENERCALC INC 1983-2023
DESCRIPTION:4x6 Rafters @ 30" o.c. (Wind Condition_Uplift) (Strength Check)
Project File: 4x6 Joist @ 30 o.c_Copy.ec6
Project Title:
Engineer:
Project ID:
Project Descr:
Maximum Forces & Stresses for Load Combinations
Span #
Moment ValuesLoad Combination
C iCLx CCCMCF rt
Shear ValuesMax Stress Ratios
M CDV fbM fvF'b V F'vSegment Length Cfu
1.00Length = 2.0 ft 2 0.020 0.165 1.00 1.300 1.151.00 1.00 0.04 27.5 1,345.5 0.03 180.01.00 29.71.00
1.00+D+Lr+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00
1.00Length = 8.50 ft 1 0.359 0.138 1.25 1.300 1.151.00 1.00 0.89 603.4 1,681.9 0.40 225.01.00 31.11.00
1.00Length = 2.0 ft 2 0.057 0.138 1.25 1.300 1.151.00 1.00 0.14 95.5 1,681.9 0.11 225.01.00 31.11.00
1.00+D+S+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00
1.00Length = 8.50 ft 1 0.412 0.143 1.15 1.300 1.151.00 1.00 0.94 637.5 1,547.3 0.38 207.01.00 29.71.00
1.00Length = 2.0 ft 2 0.018 0.143 1.15 1.300 1.151.00 1.00 0.04 27.5 1,547.3 0.03 207.01.00 29.71.00
1.00+D+0.750Lr+0.750L+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00
1.00Length = 8.50 ft 1 0.364 0.137 1.25 1.300 1.151.00 1.00 0.90 611.9 1,681.9 0.39 225.01.00 30.81.00
1.00Length = 2.0 ft 2 0.047 0.137 1.25 1.300 1.151.00 1.00 0.12 78.5 1,681.9 0.09 225.01.00 30.81.00
1.00+D+0.750L+0.750S+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00
1.00Length = 8.50 ft 1 0.412 0.143 1.15 1.300 1.151.00 1.00 0.94 637.5 1,547.3 0.38 207.01.00 29.71.00
1.00Length = 2.0 ft 2 0.018 0.143 1.15 1.300 1.151.00 1.00 0.04 27.5 1,547.3 0.03 207.01.00 29.71.00
1.00+D+0.60W+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00
1.00Length = 8.50 ft 1 0.081 0.044 1.60 1.300 1.151.00 1.00 0.26 175.4 2,152.8 0.16 288.01.00 12.81.00
1.00Length = 2.0 ft 2 0.022 0.044 1.60 1.300 1.151.00 1.00 0.07 47.9 2,152.8 0.05 288.01.00 12.81.00
1.00+D+0.750Lr+0.750L+0.450W+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00
1.00Length = 8.50 ft 1 0.103 0.041 1.60 1.300 1.151.00 1.00 0.33 221.6 2,152.8 0.15 288.01.00 11.81.00
1.00Length = 2.0 ft 2 0.010 0.041 1.60 1.300 1.151.00 1.00 0.03 21.9 2,152.8 0.02 288.01.00 11.81.00
1.00+D+0.750L+0.750S+0.450W+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00
1.00Length = 8.50 ft 1 0.115 0.044 1.60 1.300 1.151.00 1.00 0.36 247.3 2,152.8 0.16 288.01.00 12.61.00
1.00Length = 2.0 ft 2 0.014 0.044 1.60 1.300 1.151.00 1.00 0.04 29.1 2,152.8 0.03 288.01.00 12.61.00
1.00+0.60D+0.60W+0.60H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00
1.00Length = 8.50 ft 1 0.151 0.059 1.60 1.300 1.151.00 1.00 0.48 325.0 2,152.8 0.22 288.01.00 16.91.00
1.00Length = 2.0 ft 2 0.027 0.059 1.60 1.300 1.151.00 1.00 0.09 59.0 2,152.8 0.07 288.01.00 16.91.00
1.00+D+0.70E+0.60H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00
1.00Length = 8.50 ft 1 0.296 0.103 1.60 1.300 1.151.00 1.00 0.94 637.5 2,152.8 0.38 288.01.00 29.71.00
1.00Length = 2.0 ft 2 0.013 0.103 1.60 1.300 1.151.00 1.00 0.04 27.5 2,152.8 0.03 288.01.00 29.71.00
1.00+D+0.750L+0.750S+0.5250E+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00
1.00Length = 8.50 ft 1 0.296 0.103 1.60 1.300 1.151.00 1.00 0.94 637.5 2,152.8 0.38 288.01.00 29.71.00
1.00Length = 2.0 ft 2 0.013 0.103 1.60 1.300 1.151.00 1.00 0.04 27.5 2,152.8 0.03 288.01.00 29.71.00
1.00+0.60D+0.70E+H 1.300 1.151.00 1.00 0.0 0.00 0.01.00 0.01.00
1.00Length = 8.50 ft 1 0.178 0.062 1.60 1.300 1.151.00 1.00 0.56 382.5 2,152.8 0.23 288.01.00 17.81.00
1.00Length = 2.0 ft 2 0.008 0.062 1.60 1.300 1.151.00 1.00 0.02 16.5 2,152.8 0.02 288.01.00 17.81.00
.
Location in SpanLoad CombinationMax. "-" Defl Location in SpanLoad Combination Span Max. "+" Defl
Overall Maximum Deflections
W Only10.0000 0.000 -0.2311 4.179
W Only 2 0.1552 2.000 0.0000 4.179
.
Load Combination Support 1 Support 2 Support 3
Vertical Reactions Support notation : Far left is #1 Values in KIPS
Max Upward from all Load Conditions 0.301 0.549
Max Upward from Load Combinations 0.301 0.549
Max Upward from Load Cases 0.244 0.430
Max Downward from all Load Conditio -0.636 -0.726
Max Downward from Load Combinations -0.235 -0.177
Max Downward from Load Cases (Resis -0.636 -0.726
+D+H 0.244 0.430
+D+L+H 0.244 0.430
+D+Lr+H 0.301 0.549
Page 13
Wood Beam
LIC# : KW-06014559, Build:20.23.05.01 ERUSU CONSULTANTS US (c) ENERCALC INC 1983-2023
DESCRIPTION:4x6 Rafters @ 30" o.c. (Wind Condition_Uplift) (Strength Check)
Project File: 4x6 Joist @ 30 o.c_Copy.ec6
Project Title:
Engineer:
Project ID:
Project Descr:
Load Combination Support 1 Support 2 Support 3
Vertical Reactions Support notation : Far left is #1 Values in KIPS
+D+S+H 0.244 0.430
+D+0.750Lr+0.750L+H 0.287 0.519
+D+0.750L+0.750S+H 0.244 0.430
+D+0.60W+H -0.137 -0.005
+D+0.750Lr+0.750L+0.450W+H 0.001 0.192
+D+0.750L+0.750S+0.450W+H -0.042 0.104
+0.60D+0.60W+0.60H -0.235 -0.177
+D+0.70E+0.60H 0.244 0.430
+D+0.750L+0.750S+0.5250E+H 0.244 0.430
+0.60D+0.70E+H 0.147 0.258
D Only 0.244 0.430
Lr Only 0.057 0.118
W Only -0.636 -0.726
H Only
Page 14
Project :
Project Number:
By :
Date :
Seismic Ground Motion Values
Richard Kain
PE
30-05-2023
Page 15
Project :
Project Number:
By :
Date :
Seismic Design Force
Seismic Loads - ASCE 7-16 Chapter 13
Seismic Force
Component Amplification Factor, ap=(Refer ASCE 7-16, Table 13.6 -1)
Overstrength Factor, Ωo =(Refer ASCE 7-16, Table 13.6 -1)
Component Importance Factor, Ip=
SDS =
Average roof height of structure,h =ft
z/h =z/h should not exceed 1
Frame Weight Wp = psf
Seismic Design Force on Solar framing structure
Max Fp =1.6 x SDS x Ip X Wp =psf
Min Fp =0.3 x SDS x Ip X Wp =psf
Seismic Design Load Fp =psf
Vertical Seismic Design Load Fp =psf
1.00
Component Response Modification
Factor, Rp=
1.50
15
1.11
2.95
0.74
Height in structure at point of attachment,
z =
ft
(Refer ASCE 7-16, Table 13.6 -1)
Seismic Coefficients for Mechanical
and Electrical components =12 Other mechanical or electrical components.
1
3.07
psf
5.89
15
FP = ((0.4 x ap x SDS x Wp)/ (Rp / Ip)) x
((1+2(z/h)) =2.95
1.00
1.00
1.20
Richard Kain
PE
30-05-2023
Page 16
Project :
Project Number:
By :
Date :
Richard Kain
PE
30-05-2023
Check for Increase in overall seismic loads
Array Area =ft2
Number of Arrays =
Total Array Area =ft2
Array Load = psf
Number of Existing Modules =
Existing Area =ft2
Total Array Wt. = lb
Total Roof Area =ft2
DL of Roof = psf
Total Wt of Roof = lb
Increase in Seismic Wt = <
Conservatively the Wt. of the Walls tributary to the roof is not included. Seismic weight increase is less than
10% and no seismic retrofit or evaluation of existing lateral system is required per Section 503.4 of 2022
CEBC.
1436.1
1791.0
8.19
3
14
270.22
21.0
12
251.99
14660
9.8% 10%
Page 17
Project :
Project Number:
By :
Date :
POWER WALL UNIT ATTACHEMENT
CALCULATION
Richard Kain
PE
30-05-2023
Page 18
Project :
Project Number:
By :
Date :
1. Loading Criteria
Powerwall Unit Height = ft
Powerwall Unit Width = ft
Powerwall Unit Depth = ft
Powerwall Unit C.G Height, HCG = ft
Single Powerwall Weight, W = lbs
Number of battery units, n =
Max number of stacks per unit, N =
Stack operating weight, WPW = lbs
Total operating weight, WTPW = lbs
Wpw =
Unit type = Wall Mounted
Number of anchor points at powerwall bracket, n1 =
Bolt distance along width, BDX1 = ft
Bolt distance along length, BDY1 = ft
2. Check (E) wall capacity to support additional loads imposed by the (N) powerwall units
Shear due to dead load at each anchor point, PPW= lbs
(E) Wall self weight, Wwall =psf
Wall Studs =
Wall Stud spacing, s =in
Wall self tributary to each stud =plf
Wall Height, hwall-1 =ft
Richard Kain
PE
30-05-2023
10.0
2x4
16
13.3
n x N x W
10
1.33
3.8
2.5
0.5
4.9
251.3
1
1
251.3
251.3
4
lbs/Anchor point
1.5
62.825
Dead T/C Loads from powerwall stack at each
anchor point, T/CPW-DL=21
Page 19
Wood Column
LIC# : KW-06014559, Build:20.23.05.01 ERUSU CONSULTANTS US (c) ENERCALC INC 1983-2023
DESCRIPTION:2x4post
Project File: 2x4 studd.ec6
Project Title:
Engineer:
Project ID:
Project Descr:
.Code References
Calculations per NDS 2018, IBC 2021, ASCE 7-16
Load Combinations Used : ASCE 7-16
General Information
Wood Section Name 2x4Analysis Method :
10Overall Column Height ft
Allowable Stress Design
( Used for non-slender calculations )Allow Stress Modification Factors
End Fixities Top & Bottom Pinned
Wood Species
Wood Grade
Fb +1,500.0
1,500.0 psi
1,000.0
1,000.0
150.0
1,000.0
33.0
psi Fv psi
Fb -Ft psi
Fc - Prll psi
psi
Density pcf
Fc - Perp
E : Modulus of Elasticity . . .
1,400.0
1,400.0
1,400.0
1,400.0
Cfu : Flat Use Factor 1.0
Cf or Cv for Tension 1.0
Use Cr : Repetitive ?
Kf : Built-up columns 1.0 NDS 15.3.2
Exact Width 1.50 in
Exact Depth 3.50 in
Area 5.250 in^2
Ix 5.359 in^4
Iy 0.9844 in^4
Wood Grading/Manuf.Graded Lumber
Wood Member Type Sawn
Ct : Temperature Factor 1.0
Cf or Cv for Compression 1.0
1,400.0
Axial
Cm : Wet Use Factor 1.0
Cf or Cv for Bending 1.0
x-x Bending y-y Bending
ksi No
Minimum
Basic
Y-Y (depth) axis :
X-X (width) axis :
Fully braced against buckling ABOUT X-X Axis
Fully braced against buckling ABOUT Y-Y Axis
Brace condition for deflection (buckling) along columns :
.Service loads entered. Load Factors will be applied for calculations.Applied Loads
Column self weight included : 12.031 lbs * Dead Load Factor
AXIAL LOADS . . .
Axial Load at 10.0 ft, D = 0.240, Lr = 0.120, W = 0.320 k
BENDING LOADS . . .
Lat. Point Load at 2.0 ft creating Mx-x, E = 0.0210 k
Lat. Point Load at 3.50 ft creating Mx-x, E = 0.0210 k
.DESIGN SUMMARY
PASS
PASS
Max. Axial+Bending Stress Ratio =0.08659
Location of max.above base 3.490 ft
Applied Axial 0.2520 k
Applied Mx 0.05249 k-ft
Load Combination +D+0.70E+0.60H
Load Combination +D+0.70E+0.60H
Bending & Shear Check Results
Maximum Shear Stress Ratio =
Applied Design Shear 9.135 psi
240.0Allowable Shear psi
0.02538 : 1 Bending Compression Tension
Location of max.above base 1.946 ft
: 1
At maximum location values are . . .
Applied My 0.0 k-ft
Maximum SERVICE Lateral Load Reactions . .
Top along Y-Y 0.01155 k Bottom along Y-Y 0.03045 k
Top along X-X 0.0 k Bottom along X-X 0.0 kGoverning NDS Forumla Comp + Mxx, NDS Eq. 3.9-3
Maximum SERVICE Load Lateral Deflections . . .
Along Y-Y 0.1493 in at 4.564 ft above base
for load combination :E Only
Along X-X 0.0 in at 0.0 ft above base
Fc : Allowable 1,600.0 psi
Other Factors used to calculate allowable stresses . . .
for load combination :n/a
.
Maximum Axial + Bending Stress Ratios Maximum Shear RatiosCDCLoad Combination Stress Ratio Location Stress Ratio Status LocationPStatus
Load Combination Results
+D+H 0.900 PASS PASS0.0 0.0 10.0 ft1.000 ft0.05334
+D+L+H 1.000 PASS PASS0.0 0.0 10.0 ft1.000 ft0.04801
+D+Lr+H 1.250 PASS PASS0.0 0.0 10.0 ft1.000 ft0.05669
+D+S+H 1.150 PASS PASS0.0 0.0 10.0 ft1.000 ft0.04174
+D+0.750Lr+0.750L+H 1.250 PASS PASS0.0 0.0 10.0 ft1.000 ft0.05212
+D+0.750L+0.750S+H 1.150 PASS PASS0.0 0.0 10.0 ft1.000 ft0.04174
+D+0.60W+H 1.600 PASS PASS0.0 0.0 10.0 ft1.000 ft0.05286
+D+0.750Lr+0.750L+0.450W+H 1.600 PASS PASS0.0 0.0 10.0 ft1.000 ft0.05786
Page 20
Wood Column
LIC# : KW-06014559, Build:20.23.05.01 ERUSU CONSULTANTS US (c) ENERCALC INC 1983-2023
DESCRIPTION:2x4post
Project File: 2x4 studd.ec6
Project Title:
Engineer:
Project ID:
Project Descr:
Maximum Axial + Bending Stress Ratios Maximum Shear RatiosCDCLoad Combination Stress Ratio Location Stress Ratio Status LocationPStatus
Load Combination Results
+D+0.750L+0.750S+0.450W+H 1.600 PASS PASS0.0 0.0 10.0 ft1.000 ft0.04715
+0.60D+0.60W+0.60H 1.600 PASS PASS0.0 0.0 10.0 ft1.000 ft0.04086
+D+0.70E+0.60H 1.600 PASS PASS3.490 0.02538 1.946 ft1.000 ft0.08659
+D+0.750L+0.750S+0.5250E+H 1.600 PASS PASS3.490 0.01903 1.946 ft1.000 ft0.06517
+0.60D+0.70E+H 1.600 PASS PASS3.490 0.02538 1.946 ft1.000 ft0.08602
.
k k-ft
Note: Only non-zero reactions are listed.
Load Combination
X-X Axis Reaction Y-Y Axis Reaction Axial Reaction
@ Base @ Top @ Base@ Base @ Top
Maximum Reactions
@ Base @ Base@ Top @ Top
My - End Moments Mx - End Moments
+D+H 0.252
+D+L+H 0.252
+D+Lr+H 0.372
+D+S+H 0.252
+D+0.750Lr+0.750L+H 0.342
+D+0.750L+0.750S+H 0.252
+D+0.60W+H 0.444
+D+0.750Lr+0.750L+0.450W+H 0.486
+D+0.750L+0.750S+0.450W+H 0.396
+0.60D+0.60W+0.60H 0.343
+D+0.70E+0.60H 0.008 0.2520.021
+D+0.750L+0.750S+0.5250E+H 0.006 0.2520.016
+0.60D+0.70E+H 0.008 0.1510.021
D Only 0.252
Lr Only 0.120
L Only
S Only
W Only 0.320
E Only 0.0120.030
H Only
.Maximum Deflections for Load Combinations
Max. X-X Deflection Max. Y-Y Deflection DistanceLoad Combination Distance
+D+H 0.0000 0.000 0.000 ftftinin0.000
+D+L+H 0.0000 0.000 0.000 ftftinin0.000
+D+Lr+H 0.0000 0.000 0.000 ftftinin0.000
+D+S+H 0.0000 0.000 0.000 ftftinin0.000
+D+0.750Lr+0.750L+H 0.0000 0.000 0.000 ftftinin0.000
+D+0.750L+0.750S+H 0.0000 0.000 0.000 ftftinin0.000
+D+0.60W+H 0.0000 0.000 0.000 ftftinin0.000
+D+0.750Lr+0.750L+0.450W+H 0.0000 0.000 0.000 ftftinin0.000
+D+0.750L+0.750S+0.450W+H 0.0000 0.000 0.000 ftftinin0.000
+0.60D+0.60W+0.60H 0.0000 0.000 0.000 ftftinin0.000
+D+0.70E+0.60H 0.0000 0.105 4.564 ftftinin0.000
+D+0.750L+0.750S+0.5250E+H 0.0000 0.078 4.564 ftftinin0.000
+0.60D+0.70E+H 0.0000 0.105 4.564 ftftinin0.000
D Only 0.0000 0.000 0.000 ftftinin0.000
Lr Only 0.0000 0.000 0.000 ftftinin0.000
L Only 0.0000 0.000 0.000 ftftinin0.000
S Only 0.0000 0.000 0.000 ftftinin0.000
W Only 0.0000 0.000 0.000 ftftinin0.000
E Only 0.0000 0.149 4.564 ftftinin0.000
H Only 0.0000 0.000 0.000 ftftinin0.000
.
Page 21
Wood Column
LIC# : KW-06014559, Build:20.23.05.01 ERUSU CONSULTANTS US (c) ENERCALC INC 1983-2023
DESCRIPTION:2x4post
Project File: 2x4 studd.ec6
Project Title:
Engineer:
Project ID:
Project Descr:
Sketches
Page 22
Project :
Project Number:
By :
Date :
GLOBAL DESIGN CRITERIA
1. Powerwall unit and Bracket Design Specifications :
Unit Height = in
Unit Width = in
Unit Depth = in
Vertical distance between fasteners, Yf = in
Unit weight, W = lbs
Eccentricity from powerwall, e = in
2. Applicable site loads and coefficients
Max Wind Pressure
Wind load = mph
Risk Category =
Exposure Category =
Velocity Pressure Coefficient, KZ =
Topographic Factor, KZt =
Wind Directionality Factor, Kd =
Ke =
External Pressure Coefficient, GCp =
(Ignored for fastener calc)
Max Seismic Load
SRA at Short Period, SS =ASCE 7-16 Section 11.4.2
Site Class =ASCE 7-16 Section 11.4.3
Short Period Site Coefficient, Fa =ASCE 7-16 Table 11.4-1
ASCE 7-16 Table 11.4-2
Short Period Spectral Acceleration, SDS =ASCE 7-16 Table 11.4-3
Seismic Design Category = ASCE 7-16 Section 11.6
Long Period Site Coefficient, FV =
Internal Pressure Coefficient, GCpi =
Richard Kain
PE
30-05-2023
45.3
29.6
5.75
18
251.3
6.8
97
1
0.85
1
0.85
II
B
NA
1.20
*null
1.4
0.0
1.5
D
1.2
Page 23
Project :
Project Number:
By :
Date :
GRAVITY LOAD CALCULATIONS
Snow Load
0.7 * Ce * Ct * Is * Pg,max (Refer ASCE 7-16, Section 7.3-1)
= psf
Wind Pressure
Velocity Pressure, qz = 00256 * Kz * Kzt * Kd* V2 (Refer ASCE 7-16, Section 26.10-1)
= psf
Design Wind Pressure, p = qz * [GCp + Gcpi](Refer ASCE 7-16, Section 30.3-1 )
=psf
Seismic Forces
0.4 * ap * SDS * Wp * [1 + (2 * z / h)]
Short Period Spectral Acceleration, SDS =
Component Amplification Factor, ap =(Batteries - Refer ASCE 7-16, Table 13.6-1)
(need not exceed 1.0)
(Hazardous material - Refer ASCE 7-16, Table 13.1.3)
* Wp
0.3 * SDS * Ip * Wp (Refer ASCE 7-16, Section 13.3-3 )
* Wp
1.6 * SDS * Ip * Wp (Refer ASCE 7-16, Section 13.3-2 )
= * Wp
lbs
* Wp
=lbs
= * Wp
= lbs
271.4
251.3
Vertical Seismic Force, Fp,vert =
60.3
1
1
2.5
0.24
0.54
1.08
1.08
Weight of 1 Powerwall + Bracket, Wp =
Fp,final =
0.2 * SDS * Wp
Richard Kain
PE
30-05-2023
0
(Rp / Ip)
1.2
1.92
Pf,max =
Fp,max =
Fp,min =
Horizontal Seismic Force, Fp =
(z/h)wall =
Component Importance Factor, Ip =
Response Modification Factor, Rp =
Fp,wall =
24.4
17.4
0.9
Page 24
Project :
Project Number:
By :
Date :
LOAD APPLICATIONS
Dead Load
Shear Load
Unit Load = lbs (distributed over # fasteners)
Withdrawal load
Withdrawal Force = Ecc moment / Yf
Ecc Moment = in-lbs
Withdrawal Force = lbs (distributed @ Top Bracket)
Snow Load
Shear Load
Shear Force, Sparallel =
=lbs (distributed over # fasteners)
Withdrawal load
Withdrawal Force =
Ecc Moment = in-lbs
Withdrawal Force = lbs (distributed @ Top Bracket)
Wind Load
Shear Load
Wind Load, Wparallel = p * Side Surface Area of Unit
=lbs (distributed over # fasteners)
Withdrawal load (Suction)
Withdrawal Load on Fastener =
from Wind Load, Wperp = p * Front Surface Area of Unit
= lbs (distributed over # fasteners)
Ecc moment / Yf
0
0.0
44.1
226.9
Richard Kain
PE
30-05-2023
Pf * Top Surface Area of Unit
251.3
1708.8
94.9
0
Page 25
Project :
Project Number:
By :
Date :
Richard Kain
PE
30-05-2023
Seismic Load
Shear Load
lbs
lbs (Refer ASCE 7-16, Section 12.4-4)
Withdrawal load (accounts for horizontal components of Fp,vert and Fp)
lbs
lbs (Refer ASCE 7-16, Section 12.4-3)
+
Note: All withdrawal loads account for eccentricity, e, of the unit/bracket/wall system
Greatest Withdrawal Load from Load Combination
[D+.75*L+.75*(.6W)+.75*S] =lbs
((1+.14Sds)D+0.7Ev = lbs
((1+0.105Sds)D+0.525Ex+0.75S) = lbs
Max Withdrawal load =
Greatest Shear Load from [D+.75*L+.75*(.6W)+.75*S] Load Combination
[D+.75*L+.75*(.6W)+.75*S] =lbs
((1+.14Sds)D+0.7Ev = lbs
((1+0.105Sds)D+0.525Ex+0.75S) = lbs
Max Shear load =
60.3
# Top Fasteners
Horizontal
271.4
# Total Fasteners
Vertical
Horizontal Seismic Force, Fp =271.4
Horizontal Effect, Eh = 271.4
Vertical Seismic Force, Fp,vert =60.3
Vertical Effect, Ev = 60.3
483.5
425.5
197.0
483.5
197.0
153.1
138.6
271.1
Seismic Load, E =
Page 26
Project :
Project Number:
By :
Date :
ATTACHMENTS USING WOOD STUDS
Wood Stud (With & Without Blocking)
Lag Screw/Bolt Size =
Number of Screws in Tension =
Thread Length, p = in
Eccentricity, e = in
Withdrawal per Fastener, T = lbs
SPF Lumber Specific Gravity, G =
Withdrawal Design, W = lbs/in [NDS Table 12.2A]
Load Duration Factor, CD =
Capacity of Fasteners'' = lbs
> O.K.
lbs
Shear Design, Z = lbs/in [NDS Table 12J (SPF)]
Load Duration Factor, CD =
Z' = lbs
> O.K.
Combined Shear and Withdrawal Analysed per NDS 2012 Sec. 11.4 and Eq. 11.4-2
α = deg
R= lbs
Z' α = lbs
DCR =
=<O.K.
130.53
415
494
494
Shear Load per Fastener, V = 121
110
440.0 120.88
1.6
440.0
R/Z' α
Richard Kain
PE
30-05-2023
0.31
22.2
1.05
2.5
6.8
173.0
1.6
49.26
4
49.26
0.42
1/4
Page 27